A195156 a(n) = (16^n-1)/3.
0, 5, 85, 1365, 21845, 349525, 5592405, 89478485, 1431655765, 22906492245, 366503875925, 5864062014805, 93824992236885, 1501199875790165, 24019198012642645, 384307168202282325, 6148914691236517205, 98382635059784275285, 1574122160956548404565
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Crossrefs
Programs
-
Magma
[(16^n-1)/3:n in [0..20]]; // Vincenzo Librandi, Sep 20 2011
-
Maple
A195156:=n->(16^n-1)/3; seq(A195156(k), k=0..50); # Wesley Ivan Hurt, Oct 24 2013
-
Mathematica
Table[(16^n - 1)/3, {n, 0, 63}] (* Wesley Ivan Hurt, Oct 24 2013 *)
-
PARI
for(n=0,50, print1((16^n - 1)/3, ", ")) \\ G. C. Greubel, Oct 11 2017
Formula
From Bruno Berselli, Sep 19 2011: (Start)
G.f.: 5*x/((1-x)*(1-16*x)).
a(n) = A002450(2n) = (16^n-1)/3.
From Jianing Song, Aug 30 2022: (Start)
a(n) = A001045(4*n).
E.g.f.: exp(x)*(exp(15*x) - 1)/3. - Stefano Spezia, Dec 17 2022
Extensions
New sequence name suggested by Charles R Greathouse IV using Berselli's formula. - Sep 19 2011
Comments