cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195350 Expansion of (1 - 3*x - x^2)/(1 - 4*x + 2*x^3 + x^4).

Original entry on oeis.org

1, 1, 3, 10, 37, 141, 541, 2080, 8001, 30781, 118423, 455610, 1752877, 6743881, 25945881, 99822160, 384048001, 1477556361, 5684635243, 21870622810, 84143330517, 323726495221, 1245480100021, 4791763116240, 18435456144001, 70927137880741
Offset: 0

Views

Author

Bruno Berselli, Sep 16 2011

Keywords

Comments

Rewrite the Girard-Waring formulae to express the mean powers in terms of the mean symmetric functions of the data values; the results are polynomials in the mean symmetric polynomials, indexed by the power n. Then for 3 data points, the sum of the positive coefficients in the n-th such polynomial is a(n). a(n+1)/a(n) approaches 1/(2^(1/3)-1). See extended comment in A301417. - Gregory Gerard Wojnar, Mar 19 2018

Crossrefs

Cf. A185962 (gives the coefficients of numerator and denominator of the g.f., row 4 and 5 of its triangular array). Sequences likewise related to A185962: A000012 (row 1 and 2), A001333 (row 2 and 3) and A006190 (row 3 and 4).

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x-x^2)/(1-4*x+2*x^3+x^4)));
    
  • Maple
    [seq(coeftayl((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    CoefficientList[Series[(1 - 3 x - x^2)/(1 - 4 x + 2 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 26 2013 *)
  • Maxima
    makelist(coeff(taylor((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 25);
  • PARI
    Vec((1-3*x-x^2)/(1-4*x+2*x^3+x^4)+O(x^26))
    

Formula

G.f.: (1-3*x-x^2)/((1-x)*(1-3*x-3*x^2-x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4).
a(n) = A301483(n) - A303647(n-2) + A195339(n-4) (conjectured). - Gregory Gerard Wojnar, Apr 27 2018