A195350 Expansion of (1 - 3*x - x^2)/(1 - 4*x + 2*x^3 + x^4).
1, 1, 3, 10, 37, 141, 541, 2080, 8001, 30781, 118423, 455610, 1752877, 6743881, 25945881, 99822160, 384048001, 1477556361, 5684635243, 21870622810, 84143330517, 323726495221, 1245480100021, 4791763116240, 18435456144001, 70927137880741
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, Universal peculiar linear mean relationships in all polynomials, arXiv:1706.08381 [math.GM], 2017. See Table GW. n=3 p. 22.
- Index entries for linear recurrences with constant coefficients, signature (4,0,-2,-1).
Crossrefs
Programs
-
Magma
m:=26; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x-x^2)/(1-4*x+2*x^3+x^4))); -
Maple
[seq(coeftayl((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x = 0, k), k=0..25)]; # Muniru A Asiru, Mar 20 2018
-
Mathematica
CoefficientList[Series[(1 - 3 x - x^2)/(1 - 4 x + 2 x^3 + x^4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 26 2013 *)
-
Maxima
makelist(coeff(taylor((1-3*x-x^2)/(1-4*x+2*x^3+x^4), x, 0, n), x, n), n, 0, 25);
-
PARI
Vec((1-3*x-x^2)/(1-4*x+2*x^3+x^4)+O(x^26))
Formula
G.f.: (1-3*x-x^2)/((1-x)*(1-3*x-3*x^2-x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4).
Comments