cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A122399 a(n) = Sum_{k=0..n} k^n * k! * Stirling2(n,k).

Original entry on oeis.org

1, 1, 9, 211, 9285, 658171, 68504709, 9837380491, 1863598406805, 450247033371451, 135111441590583909, 49300373690091496171, 21495577955682021043125, 11037123350952586270549531, 6591700149366720366704735109
Offset: 0

Views

Author

Vladeta Jovovic, Aug 31 2006

Keywords

Comments

Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 2, 1, 3, 3, 0, 1, 2, 1, 3, 3, 0, ...], with an apparent period of 6. Cf. A338040. - Peter Bala, May 31 2022

Examples

			E.g.f.: A(x) = 1 + x + 9*x^2/2! + 211*x^3/3! + 9285*x^4/4! + 658171*x^5/5! + ...
such that
A(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2 + (exp(3*x)-1)^3 + (exp(4*x)-1)^4 + ...
The e.g.f. is also given by the series:
A(x) = 1/2 + exp(x)/(1+exp(x))^2 + exp(4*x)/(1+exp(2*x))^3 + exp(9*x)/(1+exp(3*x))^4 + exp(16*x)/(1+exp(4*x))^5 + exp(25*x)/(1+exp(5*x))^6 + ...
or, equivalently,
A(x) = 1/2 + exp(-x)/(1+exp(-x))^2 + exp(-2*x)/(1+exp(-2*x))^3 + exp(-3*x)/(1+exp(-3*x))^4 + exp(-4*x)/(1+exp(-4*x))^5 + exp(-5*x)/(1+exp(-5*x))^6 + ...
		

Crossrefs

Programs

  • Maple
    a := n -> add(k^n*k!*combinat[stirling2](n,k),k=0..n); # Max Alekseyev, Feb 01 2007
  • Mathematica
    Flatten[{1,Table[Sum[k^n*k!*StirlingS2[n,k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Jun 21 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, m^m*m!*x^m/prod(k=1, m, 1-m*k*x+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 05 2013
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, (exp(k*x +x*O(x^n)) - 1)^k), n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Oct 26 2014
    
  • PARI
    /* From e.g.f. infinite series: */
    \p100 \\ set precision
    {A=Vec(serlaplace(sum(n=0, 500, 1.*exp(n^2*x +O(x^26))/(1 + exp(n*x +O(x^26)))^(n+1)) ))}
    for(n=0, #A-1, print1(round(A[n+1]), ", ")) \\ Paul D. Hanna, Oct 30 2014

Formula

E.g.f.: Sum_{n >= 0} (exp(n*x) - 1)^n. - Vladeta Jovovic, Sep 03 2006
E.g.f.: Sum_{n>=0} exp(n^2*x) / (1 + exp(n*x))^(n+1). - Paul D. Hanna, Oct 26 2014
E.g.f.: Sum_{n>=0} exp(-n*x) / (1 + exp(-n*x))^(n+1). - Paul D. Hanna, Oct 30 2014
O.g.f.: Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 - n*k*x). - Paul D. Hanna, Jan 05 2013
Limit n->infinity (a(n)/n!)^(1/n)/n = ((1+exp(1/r))*r^2)/exp(1) = A317855/exp(1) = 1.162899527477400818845..., where r = 0.87370243323966833... is the root of the equation 1/(1+exp(-1/r)) = -r*LambertW(-exp(-1/r)/r). - Vaclav Kotesovec, Jun 21 2013
a(n) ~ c * A317855^n * (n!)^2 / sqrt(n), where c = 0.327628285569869481442286492410507030710253054522608... - Vaclav Kotesovec, Aug 09 2018
Let A(x) = 1 + x + 9*x^2/2! + 211*x^3/3! + ... denote the e.g.f. of the sequence. Let F(x) denote the series reversion of A(x) - 1 = x - 9*x^2/2 + 16*x^3/3 - 205*x^4/4 - 2714*x^5/5 - .... Then both dF/dx = 1 - 9*x + 16*x^2 - 205*x^3 - 2714*x^4 - ... and exp(F(x)) = 1 + x - 4*x^2 + x^3 - 38*x^4 - 606*x^5 - ... have integer coefficients. Note that 1 + series reversion(exp(F(x)) - 1) is the o.g.f. for A122400. - Peter Bala, Aug 09 2022

Extensions

More terms from Max Alekseyev, Feb 01 2007

A338040 E.g.f.: Sum_{j>=0} 4^j * (exp(j*x) - 1)^j.

Original entry on oeis.org

1, 4, 132, 11140, 1763076, 449262724, 168055179012, 86720706877060, 59029852191779076, 51241585497612147844, 55245853646893977682692, 72423868722672448652558980, 113447698393867318106045295876, 209271794145089904620369489016964
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 08 2020

Keywords

Comments

In general, if k > 0 and e.g.f.: Sum_{j>=0} k^j * (exp(j*x) - 1)^j, then a(n) ~ c * (1 + k*exp(1/r))^n * r^(2*n) * n!^2 / sqrt(n), where r is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/k and c is a constant (dependent only on k).
Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [4, 6, 3, 0, 1, 0, 4, 6, 3, 0, 1, 0, 4, 6, 3, 0, 1, 0, ...], with an apparent period of 6. - Peter Bala, May 31 2022

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[4^j * j^n * j! * StirlingS2[n, j], {j, 0, n}], {n, 1, 20}]}]
    nmax = 20; CoefficientList[Series[1 + Sum[4^j*(Exp[j*x] - 1)^j, {j, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(sum(m=0, n, 4^m*(exp(m*X)-1)^m), n)}

Formula

a(n) = Sum_{j=0..n} 4^j * j^n * j! * Stirling2(n,j).
a(n) ~ c * (1 + 4*exp(1/r))^n * r^(2*n) * n!^2 / sqrt(n), where r = 0.95894043087329419322124137165060249611787608513866855417024... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/4 and c = 0.37483929689722634406486945426531890297038414869116425498643733178324...

A224899 E.g.f.: Sum_{n>=0} sinh(n*x)^n.

Original entry on oeis.org

1, 1, 8, 163, 6272, 389581, 35560448, 4479975823, 744707981312, 157897753198201, 41585725184933888, 13318468253704790683, 5097100004294081380352, 2297277197389011910783621, 1204339195916670860817072128, 726625952070893090583192860743
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2013

Keywords

Comments

Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 1, 2, 0, 3, 0, 1, 1, 2, 0, 3, 0, 1, 1, 2, 0, 3, 0, ...], with an apparent period of 6. Cf. A245322. - Peter Bala, May 29 2022

Examples

			E.g.f.: A(x) = 1 + x + 8*x^2/2! + 163*x^3/3! + 6272*x^4/4! +...
where
A(x) = 1 + sinh(x) + sinh(2*x)^2 + sinh(3*x)^3 + sinh(4*x)^4 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Sum[Binomial[k,j] * (-1)^j * k^n*(k-2*j)^n / 2^k,{j,0,k}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 29 2014 *)
    Join[{1},Rest[With[{nn=20},CoefficientList[Series[Sum[Sinh[n*x]^n,{n,nn}],{x,0,nn}],x] Range[0,nn]!]]] (* Harvey P. Dale, May 18 2018 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, sinh(k*x+x*O(x^n))^k), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: Sum_{n>=0} exp(-n^2*x) * (exp(2*n*x) - 1)^n / 2^n.
a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n+1/2) / (sqrt(3-2*log(2)) * 3^(n+1/2) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Oct 28 2014

A221077 E.g.f.: Sum_{n>=0} tanh(n*x)^n.

Original entry on oeis.org

1, 1, 8, 160, 5888, 345856, 29677568, 3502489600, 544181977088, 107675615297536, 26435436140822528, 7885689342279024640, 2809177794704769548288, 1177952320402008693538816, 574318105367992485583781888, 322156963576521588458420961280, 206009256195720974104252003647488
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2012

Keywords

Comments

Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 1, 6, 1, 0, 4, 1, 1, 6, 1, 0, 4, 1, 1, 6, 1, 0, 4 ...], with an apparent period of 6. - Peter Bala, Jun 01 2022

Examples

			E.g.f.: A(x) = 1 + x + 8*x^2/2! + 160*x^3/3! + 5888*x^4/4! + 345856*x^5/5! +...
where
A(x) = 1 + tanh(x) + tanh(2*x)^2 + tanh(3*x)^3 + tanh(4*x)^4 + tanh(5*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1 + Sum[Tanh[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 31 2022 *)
    Join[{1}, Table[Sum[2^n * k^n * Sum[(-1)^j * Binomial[k, j] * Sum[(-1)^m * Binomial[j + m - 1, m] * StirlingS2[n, m] * m! / 2^m, {m, 1, n}], {j, 0, k}], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jun 01 2022 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, tanh(m*X)^m); n!*polcoeff(Egf, n)}
    for(n=0,20,print1(a(n),", ") )
    
  • PARI
    {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, (exp(2*m*X)-1)^m/(exp(2*m*X)+1)^m); n!*polcoeff(Egf, n)}
    for(n=0,20,print1(a(n),", ") )

Formula

E.g.f.: Sum_{n>=0} (exp(2*n*x) - 1)^n / (exp(2*n*x) + 1)^n.
a(n) ~ c * 2^n * (n!)^2 / (sqrt(n) * (log(1+sqrt(2)))^(2*n)), where c = 0.521427744491499132141002572969819345522922990165233786929882335275903215... - Vaclav Kotesovec, Nov 05 2014, updated Jun 02 2022

A221078 E.g.f.: Sum_{n>=0} tan(n*x)^n.

Original entry on oeis.org

1, 1, 8, 164, 6400, 404176, 37541888, 4814990144, 815074508800, 176018678814976, 47223034903789568, 15407438848482919424, 6007522256082907955200, 2758698201106509138251776, 1473586749521302260021198848, 905915791153129699969076117504
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2012

Keywords

Comments

Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic. If p = 4*m + 1 the period appears to be p - 1, while if p = 4*m + 3 the period appears to be 2*(p - 1). Cf. A245322. - Peter Bala, Jun 01 2022

Examples

			E.g.f.: A(x) = 1 + x + 8*x^2/2! + 164*x^3/3! + 6400*x^4/4! + 404176*x^5/5! +...
where
A(x) = 1 + tan(x) + tan(2*x)^2 + tan(3*x)^3 + tan(4*x)^4 + tan(5*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1 + Sum[Tan[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 31 2022 *)
    Join[{1}, Table[Sum[(-1)^((n-k)/2) * 2^n * k^n * Sum[(-1)^j * Binomial[k, j] * Sum[(-1)^m * Binomial[j + m - 1, m] * StirlingS2[n, m] * m! / 2^m, {m, 1, n}], {j, 0, k}], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jun 01 2022 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, tan(m*X)^m); n!*polcoeff(Egf, n)}
    for(n=0,20,print1(a(n),", ") )

Formula

a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = 2.82830192319144609189890882712268369027077465204866199572119508594067235975..., c = 0.3460492649810724519960613805096579760009441161242336020188358769124140... - Vaclav Kotesovec, Nov 05 2014, updated Jun 02 2022

A245322 E.g.f.: Sum_{n>=0} sin(n*x)^n.

Original entry on oeis.org

1, 1, 8, 161, 6016, 360421, 31628288, 3823725821, 609263681536, 123729353398441, 31195066498285568, 9560281195915697081, 3500145542231863853056, 1508772905238685631514061, 756360258034794813559144448, 436312320288025061112662937941, 286966475921556619941746443288576
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 05 2014

Keywords

Comments

It appears that for n >= 1, a(2*n) is even and a(2*n-1) is odd. Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic. If p = 4*m + 1 the period appears to be p - 1, while if p = 4*m + 3 the period appears to be 2*(p - 1). Cf. A224899 and A221078. - Peter Bala, May 31 2022

Crossrefs

Programs

  • Mathematica
    nmax=20; Flatten[{1,Rest[CoefficientList[Series[Sum[Sin[k*x]^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]}]
    Flatten[{1,Table[Sum[(-1)^k * (n-2*k)^n * 2^(2*k-n) * Sum[Binomial[n-2*k,j] * (-1)^j * (n-2*k-2*j)^n,{j,0,n-2*k}],{k,0,n/2}],{n,1,20}]}]
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, sin(k*x+x*O(x^n))^k), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = 2.6508143537621057095493599669955786931108630276472035393383790812849064745..., c = 0.447880926276318254580767843378566025547642779941081708311676940459098... - Vaclav Kotesovec, Nov 05 2014, updated Jun 02 2022
Showing 1-6 of 6 results.