cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195459 a(n) = phi(3*n)/2.

Original entry on oeis.org

1, 1, 3, 2, 4, 3, 6, 4, 9, 4, 10, 6, 12, 6, 12, 8, 16, 9, 18, 8, 18, 10, 22, 12, 20, 12, 27, 12, 28, 12, 30, 16, 30, 16, 24, 18, 36, 18, 36, 16, 40, 18, 42, 20, 36, 22, 46, 24, 42, 20, 48, 24, 52, 27, 40, 24, 54, 28, 58, 24, 60, 30, 54, 32, 48, 30, 66, 32, 66, 24, 70, 36, 72, 36, 60, 36, 60, 36, 78, 32, 81, 40, 82
Offset: 1

Views

Author

Paul D. Hanna, Sep 18 2011

Keywords

Comments

Compare the o.g.f. of this sequence to the following identity:
Sum_{n>=1} -moebius(3*n)*x^n/(1-x^n) = Sum_{n>=0} x^(3^n).
Here phi(n) = A000010(n), the Euler totient function of n.
a(n) = b(n)*c(n) where b(n) = 1, 1, 3, 2, 1,.. is a multiplicative function with b(p^e) = p^(e-1) for p<>3 and p(3^e)=3^e, and where c(n) = 1, 1, 1, 1, 4, 1, 6, 1, 1... is a multiplicative function with c(p^e)=p-1 for p <> 3 and c(3^e)=1. - R. J. Mathar, Jul 02 2013

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 2*x^4 + 4*x^5 + 3*x^6 + 6*x^7 + 4*x^8 +...
where A(x) = x/(1-x)^2 - x^2/(1-x^2)^2 + 0*x^3/(1-x^3)^2 + 0*x^4/(1-x^4)^2 - x^5/(1-x^5)^2 + 0*x^6/(1-x^6)^2 - x^7/(1-x^7)^2 + 0*x^8/(1-x^8)^2 + 0*x^9/(1-x^9)^2 + x^10/(1-x^10)^2 - x^11/(1-x^11)^2 +...+ -moebius(3*n)*x^n/(1-x^n)^2 +...
		

Crossrefs

Cf. A000010 (phi), A023022 (phi/2), A062570.

Programs

  • Mathematica
    EulerPhi[3*Range[100]]/2 (* Harvey P. Dale, Mar 08 2022 *)
  • PARI
    {a(n)=polcoeff(sum(m=1, n, -moebius(3*m)*x^m/(1-x^m+x*O(x^n))^2), n)}
    
  • PARI
    a(n) = eulerphi(3*n)/2; \\ Michel Marcus, Jun 07 2020

Formula

O.g.f.: Sum_{n>=1} -moebius(3*n)*x^n/(1-x^n)^2 = Sum_{n>=1} phi(3*n)/2*x^n.
a(n) = n * Product_{p | n, p prime, p != 3} (1 - 1/p). [Picquet, p. 73.]
a(n) = phi(n)/2*(((2*n^2+1) mod 3)+2). - Gary Detlefs, Dec 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = 27/(8*Pi^2) = 0.341958... . - Amiram Eldar, Nov 18 2022
Dirichlet g.f.: zeta(s-1)/(zeta(s)*(1-1/3^s)). - Amiram Eldar, Dec 26 2022

Extensions

Picquet formula and reference added by N. J. A. Sloane, Nov 23 2011