cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A327625 Expansion of Sum_{k>=0} x^(3^k) / (1 - x^(3^k))^2.

Original entry on oeis.org

1, 2, 4, 4, 5, 8, 7, 8, 13, 10, 11, 16, 13, 14, 20, 16, 17, 26, 19, 20, 28, 22, 23, 32, 25, 26, 40, 28, 29, 40, 31, 32, 44, 34, 35, 52, 37, 38, 52, 40, 41, 56, 43, 44, 65, 46, 47, 64, 49, 50, 68, 52, 53, 80, 55, 56, 76, 58, 59, 80, 61, 62, 91, 64, 65, 88, 67, 68, 92, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is power of 3.
Inverse Moebius transform of A195459.

Crossrefs

Cf. A000010, A000244, A001651 (fixed points), A051064, A129527, A195459.

Programs

  • Magma
    [(1/2)*&+[EulerPhi(3*d) :d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^(3^k)/(1 - x^(3^k))^2, {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[Log[3, n/#]] &]; Table[a[n], {n, 1, 70}]
    a[n_] := 1/2 Sum[EulerPhi[3 d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
  • PARI
    A327625(n) = (n+sumdiv(n,d,my(b=0); if(isprimepower(n/d,&b)&&(3==b),d,0))); \\ Antti Karttunen, Sep 19 2019
    

Formula

G.f. A(x) satisfies: A(x) = A(x^3) + x/(1 - x)^2.
G.f.: Sum_{k>=1} phi(3*k) * x^k / (2 * (1 - x^k)), where phi = A000010.
a(n) = (1/2) * Sum_{d|n} phi(3*d).
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(3^e) = (3^(e+1)-1)/2, and a(p^e) = p^e for p != 3.
Sum_{k=1..n} a(k) ~ (9/16) * n^2. (End)
Dirichlet g.f.: zeta(s-1)*(1+1/(3^s-1)). - Amiram Eldar, Dec 17 2022

A372673 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = phi(k*n) / phi(k).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 3, 4, 4, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 4, 4, 6, 1, 1, 3, 2, 4, 3, 6, 4, 1, 2, 2, 4, 5, 4, 6, 8, 6, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 1, 2, 3, 4, 4, 6, 6, 8, 9, 8, 10, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 1, 2, 2, 4, 4, 4, 7, 8, 6, 8, 10, 8, 12, 1, 1, 3, 2, 5, 3, 6, 4, 9, 5, 10, 6, 12, 6
Offset: 1

Views

Author

Seiichi Manyama, May 10 2024

Keywords

Examples

			Square array T(n,k) begins:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...
  2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 3, ...
  2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, ...
  4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, ...
  2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 6, ...
  6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, ...
  4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, ...
  6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, 6, 6, 9, ...
		

Crossrefs

Programs

  • PARI
    T(n, k) = eulerphi(k*n)/eulerphi(k);

A359101 a(n) = phi(5 * n)/4.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 6, 4, 6, 5, 10, 4, 12, 6, 10, 8, 16, 6, 18, 10, 12, 10, 22, 8, 25, 12, 18, 12, 28, 10, 30, 16, 20, 16, 30, 12, 36, 18, 24, 20, 40, 12, 42, 20, 30, 22, 46, 16, 42, 25, 32, 24, 52, 18, 50, 24, 36, 28, 58, 20, 60, 30, 36, 32, 60, 20, 66, 32, 44, 30, 70, 24, 72, 36, 50, 36, 60, 24, 78
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[EulerPhi[5 #]/4 &, 79] (* Michael De Vlieger, Dec 16 2022 *)
  • PARI
    a(n) = eulerphi(5*n)/4;
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(-sum(k=1, N, moebius(5*k)*x^k/(1-x^k)^2))

Formula

G.f.: -Sum_{k>=1} mu(5 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(5^e) = 5^e, and a(p^e) = (p-1)*p^(e-1) if p != 5.
Dirichlet g.f.: zeta(s-1)/(zeta(s)*(1-1/5^s)).
Sum_{k=1..n} a(k) ~ (25/(8*Pi^2)) * n^2. (End)

A359102 a(n) = phi(7 * n)/6.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 4, 6, 4, 10, 4, 12, 7, 8, 8, 16, 6, 18, 8, 14, 10, 22, 8, 20, 12, 18, 14, 28, 8, 30, 16, 20, 16, 28, 12, 36, 18, 24, 16, 40, 14, 42, 20, 24, 22, 46, 16, 49, 20, 32, 24, 52, 18, 40, 28, 36, 28, 58, 16, 60, 30, 42, 32, 48, 20, 66, 32, 44, 28, 70, 24, 72, 36, 40, 36, 70, 24, 78
Offset: 1

Views

Author

Seiichi Manyama, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[EulerPhi[7 #]/6 &, 79] (* Michael De Vlieger, Dec 16 2022 *)
  • PARI
    a(n) = eulerphi(7*n)/6;
    
  • PARI
    my(N=80, x='x+O('x^N)); Vec(-sum(k=1, N, moebius(7*k)*x^k/(1-x^k)^2))

Formula

G.f.: -Sum_{k>=1} mu(7 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
From Amiram Eldar, Dec 17 2022: (Start)
Multiplicative with a(7^e) = 7^e, and a(p^e) = (p-1)*p^(e-1) if p != 7.
Dirichlet g.f.: zeta(s-1)/(zeta(s)*(1-1/7^s)).
Sum_{k=1..n} a(k) ~ (49/(16*Pi^2)) * n^2. (End)

A194881 A number of sum-free sets related to fractional parts of multiples of a rational number in the range 1/3 to 2/3.

Original entry on oeis.org

2, 3, 6, 8, 12, 15, 21, 25, 34, 38, 48, 54, 66, 72, 84, 92, 108, 117, 135, 143, 161, 171, 193, 205, 225, 237, 264, 276, 304, 316, 346, 362, 392, 408, 432, 450, 486, 504, 540, 556, 596, 614, 656, 676, 712, 734, 780, 804, 846
Offset: 1

Views

Author

R. J. Mathar, Sep 04 2011

Keywords

Comments

Deserves a better title which mentions n in the sense that this is a sum-free set from a difference set with {1,....,n}.

Crossrefs

Programs

  • Maple
    A194881 := proc(n) 1+add(numtheory[phi](3*q),q=1..n)/2 ; end proc:
    seq(A194881(n),n=1..80) ;
  • Mathematica
    Accumulate[Table[EulerPhi[3*n], {n, 1, 60}]]/2 + 1 (* Amiram Eldar, May 08 2024 *)

Formula

a(n) = 1 + Sum_{j=1..n} A000010(3*j)/2.
a(n) ~ (27/(8*Pi^2)) * n^2. - Amiram Eldar, May 08 2024

A227128 The twisted Euler phi-function for the non-principal Dirichlet character mod 3.

Original entry on oeis.org

1, 3, 3, 6, 6, 9, 6, 12, 9, 18, 12, 18, 12, 18, 18, 24, 18, 27, 18, 36, 18, 36, 24, 36, 30, 36, 27, 36, 30, 54, 30, 48, 36, 54, 36, 54, 36, 54, 36, 72, 42, 54, 42, 72, 54, 72, 48, 72, 42, 90, 54, 72, 54, 81, 72, 72, 54, 90, 60, 108, 60, 90, 54, 96
Offset: 1

Views

Author

R. J. Mathar, Jul 02 2013

Keywords

Comments

The non-principal Dirichlet character mod 3 is chi(n) = A049347(n-1). The twisted Euler phi-function is defined as a(n) = phi(n,chi) = n*Product_{p|n} (1-chi(p)/p), where the product is over all primes p that divide n.
The sequence appears to be the Dirichlet convolution of the sequence A055615(n) and a sequence of signed 1's with the same characteristic function as A156277.
Sequences phi(n,chi) are defined as well for chi=A101455, chi=A080891, chi=A134667 and so on.

Crossrefs

Cf. A049347, A080891, A086724, A101455, A134667, A195459 (for the principal character mod 3), A227128.

Programs

  • Maple
    chi := proc(n)
        op(1+(n mod 3),[0,1,-1]) ;
    end proc:
    A227128 := proc(n)
        local a,p ;
        a := n ;
        for p in numtheory[factorset](n) do
            a := a*(1-chi(p)/p) ;
        end do:
        a ;
    end proc:
  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 2, p + 1, p - 1]*p^(e - 1); f[3, e_] := 3^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 13 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 3, 3^f[i,2], f[i, 1]^(f[i,2] - 1) * (f[i,1] + (-1)^(f[i,1]%3))))}; \\ Amiram Eldar, Oct 13 2022

Formula

Multiplicative with a(3^e) = 3^e, a(p^e) = p^(e-1)*(p-1) if p == 1 (mod 3) and a(p^e) = p^(e-1)*(p+1) if p == 2 (mod 3). - R. J. Mathar, Jul 10 2013
From Amiram Eldar, Oct 13 2022: (Start)
a(n) = A227128(n)/2 if n divisible by 3, and a(n) = A227128(n) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/(2 * A086724) = 0.639957... . (End)

A364210 a(n) = (1/(2*n)) * Sum_{d|n} 3^(n/d-1) * phi(3*d).

Original entry on oeis.org

1, 2, 4, 8, 17, 44, 105, 278, 733, 1978, 5369, 14792, 40881, 113934, 318884, 896948, 2532161, 7174862, 20390553, 58114072, 166037460, 475473286, 1364393897, 3922640132, 11297181473, 32588043882, 94143179560, 272342824320, 788854912241, 2287679406940, 6641649422409
Offset: 1

Views

Author

Seiichi Manyama, Jul 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 3^(n/#-1)*EulerPhi[3*#]/(2*n) &]; Array[a, 30] (* Amiram Eldar, Jul 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, 3^(n/d-1)*eulerphi(3*d))/(2*n);

Formula

G.f.: (-1/2) * Sum_{k>0} phi(3*k) * log(1-3*x^k)/(3*k).

A372621 a(n) = (1/2) * Sum_{k=1..n} phi(3*k).

Original entry on oeis.org

1, 2, 5, 7, 11, 14, 20, 24, 33, 37, 47, 53, 65, 71, 83, 91, 107, 116, 134, 142, 160, 170, 192, 204, 224, 236, 263, 275, 303, 315, 345, 361, 391, 407, 431, 449, 485, 503, 539, 555, 595, 613, 655, 675, 711, 733, 779, 803, 845, 865, 913, 937, 989, 1016, 1056, 1080, 1134
Offset: 1

Views

Author

Seiichi Manyama, May 07 2024

Keywords

Crossrefs

Equals A194881 - 1.
Partial sums of A195459.
Column k=3 of A372619.

Programs

  • Mathematica
    Accumulate[Table[EulerPhi[3*n], {n, 1, 60}]]/2 (* Amiram Eldar, May 08 2024 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(3*k))/2;

Formula

a(n) ~ (27/(8*Pi^2)) * n^2. - Amiram Eldar, May 08 2024
Showing 1-8 of 8 results.