A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A256045
Triangle read by rows: order of all-2s configuration on the n X k sandpile grid graph.
Original entry on oeis.org
2, 3, 1, 7, 7, 8, 11, 5, 71, 3, 26, 9, 679, 77, 52, 41, 13, 769, 281, 17753, 29, 97, 47, 3713, 4271, 726433, 434657, 272, 153, 17, 8449, 2245, 33507, 167089, 46069729, 901, 362, 123, 81767, 8569, 24852386, 265721, 8118481057, 190818387, 73124, 571, 89, 93127, 18061, 20721019, 4213133, 4974089647, 1031151241, 1234496016491, 89893
Offset: 1
Triangle begins:
[2]
[3, 1]
[7, 7, 8]
[11, 5, 71, 3]
[26, 9, 679, 77, 52]
[41, 13, 769, 281, 17753, 29]
[97, 47, 3713, 4271, 726433, 434657, 272]
[153, 17, 8449, 2245, 33507, 167089, 46069729, 901]
[362, 123, 81767, 8569, 24852386, 265721, 8118481057, 190818387, 73124]
[571, 89, 93127, 18061, 20721019, 4213133, 4974089647, 1031151241, 1234496016491, 89893]
...
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, Electronic Journal of Combinatorics, Volume 22(1), 2015.
- David Perkinson, Lecture 15: Sandpiles, PCMI 2008 Undergraduate Summer School.
A195547
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/2.
Original entry on oeis.org
1, 4, 12, 15, 80, 208, 273, 1428, 3740, 4895, 25632, 67104, 87841, 459940, 1204140, 1576239, 8253296, 21607408, 28284465, 148099380, 387729212, 507544127, 2657535552, 6957518400, 9107509825, 47687540548, 124847601996, 163427632719, 855718194320, 2240299317520
Offset: 1
-
r = 1/2; z = 30;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195547, A195548 *)
Sqrt[a^2 + b^2] (* A195549 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Table[Numerator[2 Fibonacci[n] Fibonacci[n+1] / ( Fibonacci[n] + Fibonacci[n+1])], {n, 1, 40}] (* Vincenzo Librandi, Jul 21 2018 *)
A195548
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 1/2.
Original entry on oeis.org
0, 3, 5, 8, 39, 105, 136, 715, 1869, 2448, 12815, 33553, 43920, 229971, 602069, 788120, 4126647, 10803705, 14142232, 74049691, 193864605, 253772064, 1328767775, 3478759201, 4553754912, 23843770275, 62423800997, 81713816360, 427859097159, 1120149658761
Offset: 1
Showing 1-4 of 4 results.
Comments