cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195817 Multiples of 10 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 10, 3, 20, 5, 30, 7, 40, 9, 50, 11, 60, 13, 70, 15, 80, 17, 90, 19, 100, 21, 110, 23, 120, 25, 130, 27, 140, 29, 150, 31, 160, 33, 170, 35, 180, 37, 190, 39, 200, 41, 210, 43, 220, 45, 230, 47, 240, 49, 250, 51, 260, 53, 270, 55, 280, 57, 290, 59, 300
Offset: 0

Views

Author

Omar E. Pol, Sep 29 2011

Keywords

Comments

A008592 and A005408 interleaved.
Partial sums give the generalized 14-gonal (or tetradecagonal) numbers A195818.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized 14-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Column 10 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, A195161, A195312, this sequence.

Programs

  • Magma
    [(2*(-1)^n+3)*n: n in [0..60]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    With[{nn=30},Riffle[10*Range[0,nn],Range[1,2*nn+1,2]]] (* or *) LinearRecurrence[{0,2,0,-1},{0,1,10,3},70] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    a(n) = (2*(-1)^n+3)*n; \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = (2*(-1)^n+3)*n. - Vincenzo Librandi, Sep 30 2011
From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(1+10*x+x^2)/((1-x)^2*(1+x)^2).
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) * a(n+1) = a(n(n+1)).
a(n) + a(n+1) = A091998(n+1). (End)
a(0)=0, a(1)=1, a(2)=10, a(3)=3, a(n)=2*a(n-2)-a(n-4). - Harvey P. Dale, Nov 24 2013
Multiplicative with a(2^e) = 5*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 2^(3-s)). - Amiram Eldar, Oct 25 2023