cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A195818 Generalized 14-gonal numbers: m*(6*m-5), m = 0,+1,-1,+2,-2,+3,-3,...

Original entry on oeis.org

0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175, 186, 246, 259, 329, 344, 424, 441, 531, 550, 650, 671, 781, 804, 924, 949, 1079, 1106, 1246, 1275, 1425, 1456, 1616, 1649, 1819, 1854, 2034, 2071, 2261, 2300, 2500, 2541, 2751, 2794, 3014, 3059, 3289
Offset: 0

Views

Author

Omar E. Pol, Sep 29 2011

Keywords

Comments

Also generalized tetradecagonal numbers or generalized tetrakaidecagonal numbers.
Also A211014 and positive terms of A051866 interleaved. - Omar E. Pol, Aug 04 2012
Exponents in expansion of Product_{n >= 1} (1 + x^(12*n-11))*(1 + x^(12*n-1))*(1 - x^(12*n)) = 1 + x + x^11 + x^14 + x^34 + .... - Peter Bala, Dec 10 2020

Crossrefs

Partial sums of A195817.
Column 10 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), this sequence (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [(3*n*(n+1)+(2*n+1)*(-1)^n-1)/2: n in [0..60]]; // Vincenzo Librandi, Sep 30 2011
    
  • Magma
    A195818:=func; [0] cat [A195818(n*m): m in [1,-1], n in [1..25]];
    
  • Maple
    a:= n-> (m-> m*(6*m-5))(ceil(-(n+1)/2)*(-1)^n):
    seq(a(n), n=0..46);  # Alois P. Heinz, Jun 08 2021
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,1,11,14,34},50] (* Harvey P. Dale, Mar 13 2018 *)
  • PARI
    Vec(-x*(x^2+10*x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = (3*n*(n+1) + (2*n+1)*(-1)^n - 1)/2. - Vincenzo Librandi, Sep 30 2011
G.f.: -x*(x^2+10*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 15 2013
Sum_{n>=1} 1/a(n) = 6/25 + sqrt(3)*Pi/5. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (x*(3*x + 4)*cosh(x) + (3*x^2 + 8*x - 2)*sinh(x))/2. - Stefano Spezia, Jun 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (5*log(432)-6)/25. - Amiram Eldar, Feb 28 2022

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 3, 1, 1, 0, 0, 3, 2, 1, 0, 5, 2, 3, 3, 1, 0, 0, 5, 4, 3, 4, 1, 0, 7, 3, 5, 6, 3, 5, 1, 0, 0, 7, 6, 5, 8, 3, 6, 1, 0, 9, 4, 7, 9, 5, 10, 3, 7, 1, 0, 0, 9, 8, 7, 12, 5, 12, 3, 8, 1, 0, 11, 5, 9, 12, 7, 15, 5, 14, 3, 9, 1, 0, 0, 11, 10, 9, 16, 7
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
All columns are multiplicative. - Andrew Howroyd, Jul 23 2018

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
.  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
.  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
.  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
.  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
.  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
.  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
.  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
.  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
...
		

Crossrefs

Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).

Programs

A317311 Multiples of 11 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 11, 3, 22, 5, 33, 7, 44, 9, 55, 11, 66, 13, 77, 15, 88, 17, 99, 19, 110, 21, 121, 23, 132, 25, 143, 27, 154, 29, 165, 31, 176, 33, 187, 35, 198, 37, 209, 39, 220, 41, 231, 43, 242, 45, 253, 47, 264, 49, 275, 51, 286, 53, 297, 55, 308, 57, 319, 59, 330, 61, 341, 63, 352, 65, 363, 67, 374, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 15-gonal numbers (A277082).
a(n) is also the length of the n-th line segment of the rectangular spiral wh0se vertices are the generalized 15-gonal numbers.

Crossrefs

Cf. A008593 and A005408 interleaved.
Column 11 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A277082.

Programs

  • Mathematica
    {0}~Join~Riffle[2 Range@ # - 1, 11 Range@ #] &@ 35 (* or *)
    CoefficientList[Series[x (1 + 11 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* Michael De Vlieger, Jul 26 2018 *)
    LinearRecurrence[{0,2,0,-1},{0,1,11,3},90] (* Harvey P. Dale, Aug 28 2022 *)
  • PARI
    concat(0, Vec(x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 26 2018

Formula

a(2n) = 11*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 26 2018: (Start)
G.f.: x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 11*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 9/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (13 + 9*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024

A317312 Multiples of 12 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 12, 3, 24, 5, 36, 7, 48, 9, 60, 11, 72, 13, 84, 15, 96, 17, 108, 19, 120, 21, 132, 23, 144, 25, 156, 27, 168, 29, 180, 31, 192, 33, 204, 35, 216, 37, 228, 39, 240, 41, 252, 43, 264, 45, 276, 47, 288, 49, 300, 51, 312, 53, 324, 55, 336, 57, 348, 59, 360, 61, 372, 63, 384, 65, 396, 67, 408, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 16-gonal numbers (A274978).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 16-gonal numbers.

Crossrefs

Cf. A008594 and A005408 interleaved.
Column 12 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15).
Cf. A274978.

Programs

  • Mathematica
    {0}~Join~Riffle[2 Range@ # - 1, 12 Range@ #] &@ 35 (* or *)
    CoefficientList[Series[x (1 + 12 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* or *)
    LinearRecurrence[{0, 2, 0, -1}, {0, 1, 12, 3}, 70] (* Michael De Vlieger, Jul 26 2018 *)

Formula

a(2n) = 12*n, a(2n+1) = 2*n + 1.
From Michael De Vlieger, Jul 26 2018: (Start)
G.f.: x*(1 + 12*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 3*2^(e+1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 5*2^(1-s)). - Amiram Eldar, Oct 25 2023
a(n) = (7 + 5*(-1)^n)*n/2. - Aaron J Grech, Aug 20 2024

A317313 Multiples of 13 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 13, 3, 26, 5, 39, 7, 52, 9, 65, 11, 78, 13, 91, 15, 104, 17, 117, 19, 130, 21, 143, 23, 156, 25, 169, 27, 182, 29, 195, 31, 208, 33, 221, 35, 234, 37, 247, 39, 260, 41, 273, 43, 286, 45, 299, 47, 312, 49, 325, 51, 338, 53, 351, 55, 364, 57, 377, 59, 390, 61, 403, 63, 416, 65, 429, 67, 442, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 17-gonal numbers (A303305).
More generally, the partial sums of the sequence formed by the multiples of m and the odd numbers interleaved, give the generalized k-gonal numbers, with m >= 1 and k = m + 4.
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 17-gonal numbers.

Crossrefs

Cf. A008595 and A005408 interleaved.
Column 13 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16).
Cf. A303305.

Programs

  • Mathematica
    Table[{13n, 2n + 1}, {n, 0, 35}] // Flatten (* or *)
    CoefficientList[Series[(x^3 + 13 x^2 + x)/(x^2 - 1)^2, {x, 0, 69}], x] (* or *)
    LinearRecurrence[{0, 2, 0, -1}, {0, 1, 13, 3}, 70] (* Robert G. Wilson v, Jul 26 2018 *)
  • PARI
    a(n) = if(n%2==0, return((n/2)*13), return(n)) \\ Felix Fröhlich, Jul 26 2018
    
  • PARI
    concat(0, Vec(x*(1 + 13*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 13*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 13*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 13*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 11/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (15 + 11*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024

A317314 Multiples of 14 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 14, 3, 28, 5, 42, 7, 56, 9, 70, 11, 84, 13, 98, 15, 112, 17, 126, 19, 140, 21, 154, 23, 168, 25, 182, 27, 196, 29, 210, 31, 224, 33, 238, 35, 252, 37, 266, 39, 280, 41, 294, 43, 308, 45, 322, 47, 336, 49, 350, 51, 364, 53, 378, 55, 392, 57, 406, 59, 420, 61, 434, 63, 448, 65, 462, 67, 476, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 18-gonal numbers (A274979).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 18-gonal numbers.

Crossrefs

Cf. A008596 and A005408 interleaved.
Column 14 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16), A317313 (k=17).
Cf. A274979.

Programs

  • Mathematica
    Table[4 n + 3 n (-1)^n, {n, 0, 80}] (* Wesley Ivan Hurt, Nov 25 2021 *)
  • PARI
    a(n) = if(n%2==0, return(14*n/2), return(n)) \\ Felix Fröhlich, Jul 26 2018
    
  • PARI
    concat(0, Vec(x*(1 + 14*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 14*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 14*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
a(n) = 4*n + 3*n*(-1)^n. - Wesley Ivan Hurt, Nov 25 2021
Multiplicative with a(2^e) = 7*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 3*2^(2-s)). - Amiram Eldar, Oct 25 2023

A317315 Multiples of 15 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 15, 3, 30, 5, 45, 7, 60, 9, 75, 11, 90, 13, 105, 15, 120, 17, 135, 19, 150, 21, 165, 23, 180, 25, 195, 27, 210, 29, 225, 31, 240, 33, 255, 35, 270, 37, 285, 39, 300, 41, 315, 43, 330, 45, 345, 47, 360, 49, 375, 51, 390, 53, 405, 55, 420, 57, 435, 59, 450, 61, 465, 63, 480, 65, 495, 67, 510, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 19-gonal numbers (A303813).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 19-gonal numbers.

Crossrefs

Cf. A008597 and A005408 interleaved.
Column 15 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303813.

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, 15*n/2]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 15*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 15*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 15*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 15*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 13/2^s). - Amiram Eldar, Oct 25 2023

A317316 Multiples of 16 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 16, 3, 32, 5, 48, 7, 64, 9, 80, 11, 96, 13, 112, 15, 128, 17, 144, 19, 160, 21, 176, 23, 192, 25, 208, 27, 224, 29, 240, 31, 256, 33, 272, 35, 288, 37, 304, 39, 320, 41, 336, 43, 352, 45, 368, 47, 384, 49, 400, 51, 416, 53, 432, 55, 448, 57, 464, 59, 480, 61, 496, 63, 512, 65, 528, 67, 544, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 20-gonal numbers (A218864).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 20-gonal numbers.

Crossrefs

Cf. A008598 and A005408 interleaved.
Column 16 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A218864.

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, 8*n]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 16*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 16*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 16*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 2^(e+3), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 7*2^(1-s)). - Amiram Eldar, Oct 25 2023

A317317 Multiples of 17 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 17, 3, 34, 5, 51, 7, 68, 9, 85, 11, 102, 13, 119, 15, 136, 17, 153, 19, 170, 21, 187, 23, 204, 25, 221, 27, 238, 29, 255, 31, 272, 33, 289, 35, 306, 37, 323, 39, 340, 41, 357, 43, 374, 45, 391, 47, 408, 49, 425, 51, 442, 53, 459, 55, 476, 57, 493, 59, 510, 61, 527, 63, 544, 65, 561, 67, 578, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 21-gonal numbers (A303298).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 21-gonal numbers.

Crossrefs

Cf. A008599 and A005408 interleaved.
Column 17 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303298.

Programs

  • Mathematica
    With[{nn=40},Riffle[17*Range[0,nn],2*Range[0,nn]+1]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,1,17,3},80] (* Harvey P. Dale, Jun 06 2020 *)
  • PARI
    concat(0, Vec(x*(1 + 17*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 17*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 17*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 17*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 15/2^s). - Amiram Eldar, Oct 25 2023

A317318 Multiples of 18 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 18, 3, 36, 5, 54, 7, 72, 9, 90, 11, 108, 13, 126, 15, 144, 17, 162, 19, 180, 21, 198, 23, 216, 25, 234, 27, 252, 29, 270, 31, 288, 33, 306, 35, 324, 37, 342, 39, 360, 41, 378, 43, 396, 45, 414, 47, 432, 49, 450, 51, 468, 53, 486, 55, 504, 57, 522, 59, 540, 61, 558, 63, 576, 65, 594, 67, 612, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 22-gonal numbers (A303299).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 22-gonal numbers.

Crossrefs

Cf. A008600 and A005408 interleaved.
Column 18 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303299.

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, 9*n]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 18*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 18*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 18*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 9*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 2^(4-s)). - Amiram Eldar, Oct 25 2023
Showing 1-10 of 18 results. Next