A209616
Sum of positive Dyson's ranks of all partitions of n.
Original entry on oeis.org
0, 1, 2, 4, 7, 12, 18, 29, 42, 63, 89, 128, 176, 246, 333, 453, 603, 807, 1058, 1393, 1807, 2346, 3011, 3867, 4915, 6248, 7879, 9926, 12421, 15529, 19297, 23954, 29585, 36486, 44802, 54937, 67096, 81831, 99459, 120700, 146026, 176410, 212512, 255636, 306734
Offset: 1
For n = 5 we have:
--------------------------
Partitions Dyson's
of 5 rank
--------------------------
5 5 - 1 = 4
4+1 4 - 2 = 2
3+2 3 - 2 = 1
3+1+1 3 - 3 = 0
2+2+1 2 - 3 = -1
2+1+1+1 2 - 4 = -2
1+1+1+1+1 1 - 5 = -4
--------------------------
The sum of positive Dyson's ranks of all partitions of 5 is 4+2+1 = 7 so a(5) = 7.
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- G. E. Andrews, S. H. G. Chan, and B. Kim, The odd moments of ranks and cranks (See the function R_1), Journal of Combinatorial Theory, Series A, Volume 120, Issue 1, January 2013, Pages 77-91.
- F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.
- Frank Garvan, Dyson's rank function and Andrews's SPT-function
-
# Maple program based on Theorem 1 of Andrews-Chan-Kim:
M:=101;
qinf:=mul(1-q^i,i=1..M);
qinf:=series(qinf,q,M);
R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M);
R1:=series(R1/qinf,q,M);
seriestolist(%); # N. J. A. Sloane, Sep 04 2012
-
M = 101;
qinf = Product[1-q^i, {i, 1, M}];
qinf = Series[qinf, {q, 0, M}];
R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}];
R1 = Series[R1/qinf, {q, 0, M}];
CoefficientList[R1, q] // Rest (* Jean-François Alcover, Aug 18 2018, translated from Maple *)
-
my(N=50, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)/(1-x^k)))) \\ Seiichi Manyama, May 21 2023
A208478
Triangle read by rows: T(n,k) = number of partitions of n with positive k-th rank.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 1, 5, 2, 4, 4, 2, 1, 6, 3, 5, 6, 4, 2, 1, 10, 5, 7, 9, 7, 4, 2, 1, 13, 7, 9, 11, 11, 7, 4, 2, 1, 19, 11, 12, 15, 16, 12, 7, 4, 2, 1, 25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1, 35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1
Offset: 1
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so row 4 lists 2, 1, 2, 1.
Triangle begins:
0;
1, 1;
1, 1, 1;
2, 1, 2, 1;
3, 1, 3, 2, 1;
5, 2, 4, 4, 2, 1;
6, 3, 5, 6, 4, 2, 1;
10, 5, 7, 9, 7, 4, 2, 1;
13, 7, 9, 11, 11, 7, 4, 2, 1;
19, 11, 12, 15, 16, 12, 7, 4, 2, 1;
25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1;
35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1;
...
Cf.
A063995,
A105805,
A181187,
A194547,
A194549,
A195822,
A208482,
A208483,
A209616,
A330368,
A330369,
A330370.
A208482
Triangle read by rows: T(n,k) = sum of positive k-th ranks of all partitions of n.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 4, 1, 2, 1, 7, 1, 3, 2, 1, 12, 2, 5, 4, 2, 1, 18, 3, 6, 6, 4, 2, 1, 29, 6, 9, 10, 7, 4, 2, 1, 42, 9, 11, 13, 11, 7, 4, 2, 1, 63, 16, 15, 19, 17, 12, 7, 4, 2, 1, 89, 24, 18, 25, 24, 18, 12, 7, 4, 2, 1, 128, 39, 24, 36, 34, 28, 19, 12, 7, 4, 2, 1
Offset: 1
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The sums of positive k-th ranks of the partitions of 4 are 4, 1, 2, 1 so row 4 lists 4, 1, 2, 1.
Triangle begins:
0;
1, 1;
2, 1, 1;
4, 1, 2, 1;
7, 1, 3, 2, 1;
12, 2, 5, 4, 2, 1;
18, 3, 6, 6, 4, 2, 1;
29, 6, 9, 10, 7, 4, 2, 1;
42, 9, 11, 13, 11, 7, 4, 2, 1;
63, 16, 15, 19, 17, 12, 7, 4, 2, 1;
89, 24, 18, 25, 24, 18, 12, 7, 4, 2, 1;
128, 39, 24, 36, 34, 28, 19, 12, 7, 4, 2, 1;
Terms a(1)-a(22) confirmed and additional terms added by
John W. Layman, Mar 10 2012
A330368
Irregular triangle read by rows in which row n lists the ranks of the partitions of n in nonincreasing order.
Original entry on oeis.org
0, 1, -1, 2, 0, -2, 3, 1, 0, -1, -3, 4, 2, 1, 0, -1, -2, -4, 5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5, 6, 4, 3, 2, 2, 1, 0, 0, 0, -1, -2, -2, -3, -4, -6, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 0, 0, -1, -1, -1, -2, -2, -3, -3, -4, -5, -7, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -2, -2, -2, -3, -3, -4, -4, -5, -6, -8
Offset: 1
Triangle begins:
0;
1, -1;
2, 0, -2;
3, 1, 0, -1, -3;
4, 2, 1, 0, -1, -2, -4;
5, 3, 2, 1, 1, 0, -1, -1, -2, -3, -5;
6, 4, 3, 2, 2, 1, 0, 0, 0, -1, -2, -2, -3, -4, -6;
...
A330374
Triangle read by rows: T(n,k) is the number of partitions of n whose absolute value of Dyson's rank is equal to k, with 0 <= k < n.
Original entry on oeis.org
1, 0, 2, 1, 0, 2, 1, 2, 0, 2, 1, 2, 2, 0, 2, 1, 4, 2, 2, 0, 2, 3, 2, 4, 2, 2, 0, 2, 2, 6, 4, 4, 2, 2, 0, 2, 4, 6, 6, 4, 4, 2, 2, 0, 2, 4, 10, 6, 8, 4, 4, 2, 2, 0, 2, 6, 10, 12, 6, 8, 4, 4, 2, 2, 0, 2, 7, 16, 12, 12, 8, 8, 4, 4, 2, 2, 0, 2, 11, 16, 18, 14, 12, 8, 8, 4, 4, 2, 2, 0, 2, 11, 26, 20, 20, 14, 14
Offset: 1
Triangle begins:
--------------------------------------------------------------------
n \ k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--------------------------------------------------------------------
[ 1] 1;
[ 2] 0, 2;
[ 3] 1, 0, 2;
[ 4] 1, 2, 0, 2;
[ 5] 1, 2, 2, 0, 2;
[ 6] 1, 4, 2, 2, 0, 2;
[ 7] 3, 2, 4, 2, 2, 0, 2;
[ 8] 2, 6, 4, 4, 2, 2, 0, 2;
[ 9] 4, 6, 6, 4, 4, 2, 2, 0, 2;
[10] 4, 10, 6, 8, 4, 4, 2, 2, 0, 2;
[11] 6, 10, 12, 6, 8, 4, 4, 2, 2, 0, 2;
[12] 7, 16, 12, 12, 8, 8, 4, 4, 2, 2, 0, 2;
[13] 11, 16, 18, 14, 12, 8, 8, 4, 4, 2, 2, 0, 2;
[14] 11, 26, 20, 20, 14, 14, 8, 8, 4, 4, 2, 2, 0, 2;
[15] 16, 28, 30, 22, 22, 14, 14, 8, 8, 4, 4, 2, 2, 0, 2;
...
Showing 1-5 of 5 results.
Comments