cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000503 a(n) = floor(tan(n)).

Original entry on oeis.org

0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -226, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -76, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -46, -1, 0, 8, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -6, -1, 0, -33, -1, 0, 9, -1, 0, 3, -2, 0, 2, -2, 0, 1, -2, -1, 1, -3, -1, 0, -6, -1, 0, -26
Offset: 0

Views

Author

Keywords

Comments

Every integer appears infinitely often. - Charles R Greathouse IV, Aug 06 2012
Does not satisfy Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Apr 09 2006

A195910 a(n) = ceiling(tan(n)).

Original entry on oeis.org

0, 2, -2, 0, 2, -3, 0, 1, -6, 0, 1, -225, 0, 1, 8, 0, 1, 4, -1, 1, 3, -1, 1, 2, -2, 0, 2, -3, 0, 1, -6, 0, 1, -75, 0, 1, 8, 0, 1, 4, -1, 1, 3, -1, 1, 2, -2, 0, 2, -3, 0, 1, -6, 0, 1, -45, 0, 1, 9, 0, 1, 4, -1, 1, 3, -1, 1, 2, -2, 0, 2, -3, 0, 1, -5, 0, 1, -32
Offset: 0

Views

Author

Mohammad K. Azarian, Mar 15 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(Tan(n)): n in [0..80]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[Ceiling[Tan[n]], {n, 0, 100}] (* T. D. Noe, Mar 16 2012 *)

A037448 a(n) = floor(cot(n)).

Original entry on oeis.org

0, -1, -8, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 6, 0, -1, 112, 0, -1, -8, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 6, 0, -1, 56, 0, -1, -9, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 5, 0, -1, 37, 0, -1, -9, 0, -1, -4, 1, -1, -3, 1, -1, -2, 2, 0, -2, 3, 0, -1, 5, 0, -1, 28, 0, -1, -10, 0, -1, -4, 1, -1, -3
Offset: 1

Views

Author

Jason Earls, Jun 30 2001

Keywords

Comments

Contains all integers infinitely often. - Charles R Greathouse IV, Aug 06 2012

Crossrefs

Programs

  • Magma
    [Floor(Cot(n)): n in [1..100]]; // Vincenzo Librandi, Jun 15 2015
  • Mathematica
    Floor[Cot[Range[100]]] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    v=[]; for(n=1,260,v=concat(v,floor(cotan(n)))); v
    

Extensions

a(44) corrected by T. D. Noe, Jan 21 2008
Showing 1-3 of 3 results.