cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A298858 Number of ordered ways of writing n-th triangular number as a sum of n nonzero triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 4, 11, 86, 777, 4670, 36075, 279482, 2345201, 21247326, 197065752, 1983741228, 20769081251, 228078253168, 2604226354265, 30880251148086, 379415992755572, 4818158748326064, 63116999199457944, 851467484377802094, 11811530978240316682, 168243449082524484856
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(4) = 4 because fourth triangular number is 10 and we have [3, 3, 3, 1], [3, 3, 1, 3], [3, 1, 3, 3] and [1, 3, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k*(k+1)/2))^n.

A307614 Number of partitions of the n-th triangular number into consecutive positive triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			A000217(4) = 10 = 1 + 3 + 6, so a(4) = 2.
		

Crossrefs

Formula

a(n) = [x^(n*(n+1)/2)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k*(k+1)/2).

A299032 Number of ordered ways of writing n-th triangular number as a sum of n squares of positive integers.

Original entry on oeis.org

1, 1, 0, 3, 6, 0, 12, 106, 420, 2718, 18240, 120879, 694320, 5430438, 40668264, 300401818, 2369504386, 19928714475, 174151735920, 1543284732218, 14224347438876, 135649243229688, 1331658133954940, 13369350846412794, 138122850643702056, 1462610254141337590
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(4) = 6 because fourth triangular number is 10 and we have [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4] and [1, 1, 4, 4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; local i; if n=0 then
          `if`(t=0, 1, 0) elif t<1 then 0 else 0;
          for i while i^2<=n do %+b(n-i^2, t-1) od; % fi
        end:
    a:= n-> b(n*(n+1)/2, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 25}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k^2))^n.

A338585 Number of partitions of the n-th triangular number into exactly n positive triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 9, 16, 29, 52, 92, 173, 307, 554, 1002, 1792, 3216, 5738, 10149, 17942, 31769, 55684, 97478, 170356, 295644, 512468, 886358, 1523779, 2614547, 4476152, 7627119, 12966642, 21988285, 37142199, 62591912, 105215149, 176266155, 294591431
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2020

Keywords

Examples

			The 5th triangular number is 15 and 15 = 1 + 1 + 1 + 6 + 6 = 3 + 3 + 3 + 3 + 3, so a(5) = 2.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0,
          `if`(issqr(8*n+1), n, h(n-1)))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
          `if`(i*kn, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
        end:
    a:= n-> (t-> b(t, h(t), n))(n*(n+1)/2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Nov 10 2020
  • Mathematica
    h[n_] := h[n] = If[n < 1, 0, If[IntegerQ@Sqrt[8n+1], n, h[n-1]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0], If[i k < n || k > n, 0, b[n, h[i-1], k] + b[n-i, h[Min[n-i, i]], k-1]]];
    a[n_] := b[#, h[#], n]&[n(n+1)/2];
    a /@ Range[0, 42](* Jean-François Alcover, Nov 15 2020, after Alois P. Heinz *)
  • SageMath
    # Returns a list of length n, slow.
    def GeneralizedEulerTransform(n, a):
        R. = ZZ[[]]
        f = prod((1 - y*x^a(k) + O(x, y)^a(n)) for k in (1..n))
        coeffs = f.inverse().coefficients()
        coeff = lambda k: coeffs[x^a(k)*y^k] if x^a(k)*y^k in coeffs else 0
        return [coeff(k) for k in range(n)]
    def A338585List(n): return GeneralizedEulerTransform(n, lambda n: n*(n+1)/2)
    print(A338585List(12)) # Peter Luschny, Nov 12 2020

Formula

a(n) = [x^A000217(n) y^n] Product_{j>=1} 1 / (1 - y*x^A000217(j)).
a(n) = A319797(A000217(n),n).

A232108 a(n) = [x^(n*(n+1)/2)] G(x)^(n+1) where G(x) = Sum_{n>=0} x^(n*(n+1)/2).

Original entry on oeis.org

1, 2, 4, 14, 90, 438, 3151, 24390, 204156, 1833212, 17301306, 175936764, 1870247133, 20872753540, 243478609605, 2957875659062, 37319273049382, 487266892836348, 6574891059415183, 91475580555526776, 1309960647920094337, 19278546942842385994, 291167370195970990704, 4507447478297070537800
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2013

Keywords

Examples

			Let G(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 +...
then a(n) = the coefficient of x^(n*(n+1)/2) in G(x)^n.
Coefficients of x^k in powers of G(x)^n begin:
n\k...0...1..2..3..4..5...6...7...8...9..10..11..12...13..14...15...16...
n=1: [(1),1, 0, 1, 0, 0,  1,  0,  0,  0,  1,  0,  0,   0,  0,   1,   0,...];
n=2: [1, (2),1, 2, 2, 0,  3,  2,  0,  2,  2,  2,  1,   2,  0,   2,   4,...];
n=3: [1,  3, 3,(4),6, 3,  6,  9,  3,  7,  9,  6,  9,   9,  6,   6,  15,...];
n=4: [1,  4, 6, 8,13,12,(14),24, 18, 20, 32, 24, 31,  40, 30,  32,  48,...];
n=5: [1,  5,10,15,25,31, 35, 55, 60, 60,(90),90, 95, 135,125, 126, 170,...];
n=6: [1,  6,15,26,45,66, 82,120,156,170,231,276,290, 390,435,(438),561,...]; ...
the coefficients in parenthesis form the initial terms of this sequence.
		

Crossrefs

Cf. A196010.

Programs

  • PARI
    {a(n)=local(G=sum(m=0, n+1, x^(m*(m+1)/2))+x*O(x^(n*(n+1)/2))); polcoeff(G^(n+1), n*(n+1)/2)}
    for(n=0,30,print1(a(n),", "))

A299031 Number of ordered ways of writing n-th triangular number as a sum of n squares of nonnegative integers.

Original entry on oeis.org

1, 1, 0, 3, 18, 60, 252, 1576, 10494, 64152, 458400, 3407019, 27713928, 225193982, 1980444648, 17626414158, 165796077562, 1593587604441, 15985672426992, 163422639872978, 1729188245991060, 18743981599820280, 208963405365941380, 2378065667103672024, 27742569814633730608
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(3) = 3 because third triangular number is 6 and we have [4, 1, 1], [1, 4, 1] and [1, 1, 4].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=0} x^(k^2))^n.

A331900 Number of compositions (ordered partitions) of the n-th triangular number into distinct triangular numbers.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 3, 13, 3, 55, 201, 159, 865, 1803, 7093, 43431, 14253, 22903, 130851, 120763, 1099693, 4527293, 4976767, 7516897, 14349685, 72866239, 81946383, 167841291, 897853735, 455799253, 946267825, 5054280915, 3941268001, 17066300985, 49111862599
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2020

Keywords

Examples

			a(6) = 3 because we have [21], [15, 6] and [6, 15].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; (t->
          `if`(t*(i+2)/3n, 0, b(n-t, i-1, p+1)))))((i*(i+1)/2))
        end:
    a:= n-> b(n*(n+1)/2, n, 0):
    seq(a(n), n=0..37);  # Alois P. Heinz, Jan 31 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = With[{t = i(i+1)/2}, If[t(i+2)/3 < n, 0, If[n == 0, p!, b[n, i-1, p] + If[t > n, 0, b[n-t, i-1, p+1]]]]];
    a[n_] := b[n(n+1)/2, n, 0];
    a /@ Range[0, 37] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

Formula

a(n) = A331843(A000217(n)).

Extensions

More terms from Alois P. Heinz, Jan 31 2020

A335633 Number of ordered ways of writing the n-th n-gonal number as a sum of n n-gonal numbers (with 0's allowed).

Original entry on oeis.org

1, 1, 3, 6, 5, 95, 336, 2597, 26832, 197577, 1847800, 14621101, 129754956, 1146534701, 12342194879, 161225146370, 2464561564936, 39642413790129, 620059254486798, 9430493858327959, 136438759335452360, 1881721996407396801, 24999081626667425376, 321601467988647184779
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2020

Keywords

Examples

			a(3) = 6 because the third triangular number is 6 and we have [6, 0, 0], [0, 6, 0], [0, 0, 6], [3, 3, 0], [3, 0, 3] and [0, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k (n - 2) - n + 4)/2), {k, 0, n}]^n, {x, 0, n (n^2 - 3 n + 4)/2}], {n, 0, 23}]
  • PARI
    p(n,k) = {k * (k * (n - 2) - n + 4) / 2}
    a(n) = {my(m=p(n,n)); polcoef((sum(k=0, n, x^p(n,k)) + O(x*x^m))^n, m)} \\ Andrew Howroyd, Oct 03 2020

Formula

a(n) = [x^p(n,n)] (Sum_{k=0..n} x^p(n,k))^n, where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A336091 Number of ordered ways of writing the n-th n-gonal pyramidal number as a sum of n n-gonal pyramidal numbers (with 0's allowed).

Original entry on oeis.org

1, 1, 2, 3, 10, 5, 246, 1519, 19678, 74601, 690490, 21026621, 301528272, 4397123315, 71221546592, 1001245733295, 19276579678736, 368677642975493, 6820451221691646, 136000924000323691, 3069656935024721420, 69646109074231173897, 1641880679174919030100
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 04 2020

Keywords

Examples

			a(3) = 3 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10, 0, 0], [0, 10, 0] and [0, 0, 10].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k + 1) (k (n - 2) - n + 5)/6), {k, 0, n}]^n, {x, 0, n (n + 1) (n^2 - 3 n + 5)/6}], {n, 0, 22}]

Formula

a(n) = [x^p(n,n)] (Sum_{k=0..n} x^p(n,k))^n, where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

A319221 Number of ordered ways of writing n-th triangular number as a sum of n squares.

Original entry on oeis.org

1, 2, 0, 24, 144, 960, 4608, 74048, 859952, 9568800, 109975680, 1647979872, 23917274304, 358378620704, 5528847787008, 94307761212304, 1632598198916544, 29205907283227776, 538335591996965760, 10388234139989630128, 205386383159397554688, 4173254005731822569088
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n, {x, 0, n (n + 1)/2}], {n, 0, 21}]
    Join[{1}, Table[SquaresR[n, n (n + 1)/2], {n, 21}]]

Formula

a(n) = [x^(n*(n+1)/2)] theta_3(x)^n, where theta_3() is the Jacobi theta function.
a(n) = [x^(n*(n+1)/2)] (Sum_{k=-infinity..infinity} x^(k^2))^n.
Showing 1-10 of 10 results.