cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196104 Repdigit semiprimes (semiprimes composed of identical digits).

Original entry on oeis.org

4, 6, 9, 22, 33, 55, 77, 111, 1111, 11111, 1111111, 11111111111, 11111111111111111, 2222222222222222222, 3333333333333333333, 5555555555555555555, 7777777777777777777, 22222222222222222222222, 33333333333333333333333, 55555555555555555555555
Offset: 1

Views

Author

Michel Lagneau, Oct 27 2011

Keywords

Comments

A semiprime can be repdigit (base 10) in only three ways. It can be a single-digit semiprime, a repunit semiprime (A102782), or a repunit prime times a prime digit {2, 3, 5, 7}. Occurs in proof that the sequence is infinite in which a(n) is the least semiprime > a(n-1) such that a(n) has no digit in common with a(n-1). - Jonathan Vos Post; corrected by Max Alekseyev, Sep 14 2022

Examples

			a(12) = 11111111111 = 21649 * 513239 is semiprime.
		

Crossrefs

Subsequence of A046328.
Except for initial terms, subsequence of A116063.

Programs

  • Maple
    with(numtheory):for n from 1 to 23 do:for b from 1 to 9 do:x:=(((10^n)- 1)/9)*b:if bigomega(x)=2 then printf(`%d, `,x):else fi:od:od:
  • Mathematica
    Select[FromDigits/@Flatten[Table[PadRight[{},i,n],{i,25},{n,9}],1], PrimeOmega[ #] ==2&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    print1("4, 6, 9");for(n=1,20,t=10^n\9;if(bigomega(t)==2,print1(", "t)); if(isprime(t),forprime(p=2,7,print1(", "p*t)))) \\ Charles R Greathouse IV, Oct 27 2011

Formula

Union of {4, 6, 9}, A102782, 2*A004022, 3*A004022, 5*A004022, and 7*A004022. - Jonathan Vos Post and R. J. Mathar, Oct 27 2011

Extensions

Edited by Max Alekseyev, Sep 14 2022