A196604 Decimal expansion of the least x>0 satisfying sec(x)=3x.
3, 5, 5, 5, 7, 5, 9, 8, 9, 3, 4, 2, 9, 7, 3, 3, 7, 2, 6, 2, 5, 6, 5, 3, 1, 0, 8, 5, 6, 5, 7, 7, 5, 9, 4, 8, 9, 7, 8, 5, 5, 2, 1, 8, 5, 7, 5, 8, 9, 9, 3, 9, 3, 4, 5, 5, 1, 7, 0, 1, 2, 6, 5, 8, 7, 6, 7, 3, 7, 1, 2, 4, 6, 6, 5, 8, 8, 8, 1, 7, 6, 0, 4, 7, 7, 3, 4, 1, 0, 3, 8, 8, 9, 1, 9, 0, 8, 1, 7, 0
Offset: 0
Examples
0.3555759893429733726256531085657759489...
Programs
-
Mathematica
Plot[{1/x, Cos[x], 2 Cos[x], 3*Cos[x], 4 Cos[x]}, {x, 0, 2 Pi}] t = x /. FindRoot[1/x == Cos[x], {x, .1, 5}, WorkingPrecision -> 100] RealDigits[t] (* A133868 *) t = x /. FindRoot[1/x == 2 Cos[x], {x, .5, .7}, WorkingPrecision -> 100] RealDigits[t] (* A196603 *) t = x /. FindRoot[1/x == 3 Cos[x], {x, .3, .4}, WorkingPrecision -> 100] RealDigits[t] (* A196604 *) t = x /. FindRoot[1/x == 4 Cos[x], {x, .1, .3}, WorkingPrecision -> 100] RealDigits[t] (* A196605 *) t = x /. FindRoot[1/x == 5 Cos[x], {x, .15, .23}, WorkingPrecision -> 100] RealDigits[t] (* A196606 *) t = x /. FindRoot[1/x == 6 Cos[x], {x, .1, .2}, WorkingPrecision -> 100] RealDigits[t] (* A196607 *)
Comments
Examples
Crossrefs
Programs
Mathematica