cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A196825 Decimal expansion of the least x > 0 satisfying 1/(1 + x^2) = sin(x).

Original entry on oeis.org

7, 1, 9, 4, 2, 1, 2, 9, 6, 3, 2, 7, 4, 1, 0, 3, 1, 5, 7, 1, 6, 9, 2, 2, 9, 7, 0, 0, 3, 7, 3, 3, 2, 0, 4, 9, 0, 8, 5, 1, 0, 1, 0, 6, 8, 3, 9, 1, 7, 9, 8, 9, 7, 8, 5, 7, 1, 0, 4, 1, 5, 7, 4, 3, 2, 1, 2, 3, 5, 3, 5, 3, 4, 5, 8, 4, 2, 0, 5, 5, 0, 1, 0, 8, 1, 9, 4, 4, 8, 3, 4, 5, 2, 2, 0, 3, 6, 2, 2, 7
Offset: 0

Views

Author

Clark Kimberling, Oct 07 2011

Keywords

Examples

			0.7194212963274103157169229700373320490851010...
		

Crossrefs

Cf. A196832.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196825 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196826 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196827 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196828 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196829 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196830 *)
  • PARI
    a=1; c=1; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A196826 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=2*sin(x).

Original entry on oeis.org

4, 3, 4, 2, 0, 2, 5, 4, 9, 9, 9, 8, 1, 9, 6, 3, 8, 6, 8, 1, 3, 5, 2, 4, 4, 2, 1, 9, 6, 6, 6, 8, 4, 0, 1, 9, 8, 3, 9, 6, 2, 3, 8, 0, 7, 6, 4, 7, 6, 7, 2, 5, 5, 4, 6, 4, 7, 2, 0, 6, 3, 4, 8, 5, 3, 3, 2, 3, 7, 1, 0, 7, 3, 3, 7, 0, 0, 8, 1, 7, 2, 0, 8, 8, 0, 7, 6, 7, 5, 2, 2, 1, 5, 6, 0, 7, 5, 5, 5, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 07 2011

Keywords

Examples

			0.43420254999819638681352442196668401983962380...
		

Crossrefs

Cf. A196832.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196825 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196826 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196827 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196828 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196829 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196830 *)

A196827 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=3*sin(x).

Original entry on oeis.org

3, 0, 9, 1, 5, 4, 9, 3, 3, 5, 5, 8, 9, 7, 2, 5, 7, 9, 2, 5, 2, 5, 3, 4, 5, 2, 4, 1, 8, 9, 6, 4, 0, 4, 3, 0, 0, 8, 1, 3, 4, 9, 4, 2, 0, 3, 9, 0, 9, 1, 3, 3, 7, 3, 7, 4, 3, 3, 9, 3, 4, 6, 8, 0, 0, 7, 1, 1, 5, 8, 5, 1, 4, 2, 9, 6, 6, 0, 2, 9, 9, 9, 9, 3, 2, 8, 9, 6, 2, 5, 5, 0, 5, 3, 4, 7, 8, 9, 4, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 07 2011

Keywords

Examples

			0.3091549335589725792525345241896404300813494203...
		

Crossrefs

Cf. A196832.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196825 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196826 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196827 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196828 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196829 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196830 *)

A196828 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=4*sin(x).

Original entry on oeis.org

2, 3, 8, 7, 7, 7, 6, 5, 9, 4, 4, 5, 9, 0, 4, 8, 5, 2, 5, 6, 4, 7, 2, 9, 0, 3, 0, 9, 5, 4, 6, 1, 3, 7, 4, 7, 6, 3, 8, 1, 5, 3, 9, 8, 9, 3, 9, 2, 6, 5, 3, 6, 7, 9, 7, 4, 7, 1, 1, 8, 5, 8, 5, 8, 5, 8, 4, 4, 8, 3, 5, 3, 5, 1, 1, 3, 2, 5, 0, 9, 1, 9, 6, 5, 3, 5, 9, 0, 7, 7, 4, 8, 2, 0, 9, 4, 5, 2, 0, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 07 2011

Keywords

Examples

			0.238777659445904852564729030954613747638153989...
		

Crossrefs

Cf. A196832.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196825 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196826 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196827 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196828 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196829 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196830 *)

A196829 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=5*sin(x).

Original entry on oeis.org

1, 9, 3, 9, 6, 2, 4, 3, 0, 6, 8, 1, 0, 0, 6, 7, 1, 6, 6, 3, 0, 0, 8, 0, 4, 7, 1, 7, 7, 3, 9, 5, 7, 4, 8, 6, 5, 5, 4, 8, 8, 5, 3, 9, 8, 6, 3, 7, 7, 5, 3, 2, 1, 2, 5, 8, 2, 5, 8, 6, 8, 2, 2, 0, 1, 7, 3, 6, 1, 1, 6, 2, 9, 7, 4, 5, 9, 2, 2, 6, 2, 3, 1, 8, 8, 6, 5, 2, 8, 0, 9, 3, 1, 6, 2, 0, 6, 3, 2, 5
Offset: 0

Views

Author

Clark Kimberling, Oct 07 2011

Keywords

Examples

			0.1939624306810067166300804717739574865548853986...
		

Crossrefs

Cf. A196832.

Programs

  • Mathematica
    Plot[{1/(1 + x^2), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, 2}]
    t = x /. FindRoot[1 == (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196825 *)
    t = x /. FindRoot[1 == 2 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196826 *)
    t = x /. FindRoot[1 == 3 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196827 *)
    t = x /. FindRoot[1 == 4 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196828 *)
    t = x /. FindRoot[1 == 5 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196829 *)
    t = x /. FindRoot[1 == 6 (1 + x^2) Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196830 *)

Extensions

Offset corrected by Georg Fischer, Aug 10 2021
Showing 1-5 of 5 results.