cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196875 a(n) = a(n-4) + a(n-3) + a(n-2) + a(n-1) + (n-5).

Original entry on oeis.org

1, 1, 1, 1, 4, 8, 16, 32, 64, 125, 243, 471, 911, 1759, 3394, 6546, 12622, 24334, 46910, 90427, 174309, 335997, 647661, 1248413, 2406400, 4638492, 8940988, 17234316, 33220220, 64034041, 123429591, 237918195, 458602075, 883983931, 1703933822, 3284438054
Offset: 1

Views

Author

Aditya Subramanian, Oct 07 2011

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [1, -1, 0, 0, -2, 3][j], 0)))^n. <<-1, 1, 1, 1, 1, 4>>)[1, 1]: seq(a(n), n=1..50); # Alois P. Heinz, Oct 15 2011
  • Mathematica
    nn = 40; a[1] = a[2] = a[3] = a[4] = 1; Do[a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + (n - 5), {n, 5, nn}]; Table[a[n], {n, nn}] (* T. D. Noe, Oct 07 2011 *)
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+a[n-4]+(n-5)},a,{n,40}] (* or *) LinearRecurrence[{3,-2,0,0,-1,1},{1,1,1,1,4,8},40] (* Harvey P. Dale, Aug 25 2014 *)

Formula

G.f.: (x^5-3*x^4+2*x-1)*x / ((x^4+x^3+x^2+x-1)*(x-1)^2 ).
a(n) = +3*a(n-1) -2*a(n-2) -a(n-5) +a(n-6).
a(n) = 5/9-n/3 +(10*A000078(n) +17*A000078(n+1) +21*A000078(n+2) -14*A000078(n+3))/9. - R. J. Mathar, Oct 16 2011