A197049 Number of n X 3 0..4 arrays with each element equal to the number its horizontal and vertical zero neighbors.
1, 2, 4, 10, 18, 38, 78, 156, 320, 654, 1326, 2706, 5518, 11228, 22884, 46634, 94978, 193518, 394286, 803220, 1636448, 3334030, 6792334, 13838202, 28192958, 57437684, 117018884, 238404906, 485705682, 989536598, 2016000430, 4107230284, 8367729920, 17047719214
Offset: 0
Examples
Some solutions for n=5: 2 0 2 0 1 1 2 0 1 0 3 0 0 3 0 0 3 0 0 2 0 0 4 0 1 2 0 0 2 1 3 0 2 2 0 2 2 0 3 1 1 1 2 0 3 2 0 3 2 1 0 0 2 1 1 1 1 1 2 0 1 0 2 1 2 0 0 4 0 0 2 1 1 2 0 0 3 0 0 2 1 1 2 0 0 1 1 2 0 2 2 0 1 1 0 2 2 0 2 2 0 1 0 1 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (terms n = 1..200 from R. H. Hardin)
- George Spahn, Counting Maximal Seat Assignments that Obey Social Distancing, Talk at Rutgers Experimental Mathematics Seminar, Feb. 1, 2024. Addresses this sequence on slides 26-32, but under incorrect A-number A157049.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (1,1,3,-1,-1).
Crossrefs
Column 3 of A197054.
Formula
Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-3) -a(n-4) -a(n-5) for n>6.
Equivalent g.f.: -(2*x^6-x^5+x^4-x^3-x^2-x-1)/(x^5+x^4-3*x^3-x^2-x+1). - R. J. Mathar, Oct 10 2011
Spahn (see link) provides a proof of the generating function. - Hugo Pfoertner, Apr 18 2024
Extensions
a(0)=1 prepended by Alois P. Heinz, Apr 18 2024
Comments