A198148 a(n) = n*(n+2)*(9 - 7*(-1)^n)/16.
0, 3, 1, 15, 3, 35, 6, 63, 10, 99, 15, 143, 21, 195, 28, 255, 36, 323, 45, 399, 55, 483, 66, 575, 78, 675, 91, 783, 105, 899, 120, 1023, 136, 1155, 153, 1295, 171, 1443, 190, 1599, 210, 1763, 231, 1935, 253, 2115, 276, 2303, 300, 2499, 325
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Crossrefs
Programs
-
GAP
List([0..60], n -> n*(n+2)*(9-7*(-1)^n)/16); # G. C. Greubel, Feb 21 2019
-
Magma
[n*(n+2)*(9-7*(-1)^n)/16: n in [0..60]]; // Vincenzo Librandi, Nov 25 2011
-
Maple
A198148:=n->n*(n+2)*(9-7*(-1)^n)/16; seq(A198148(k), k=0..100); # Wesley Ivan Hurt, Oct 16 2013
-
Mathematica
LinearRecurrence[{0,3,0,-3,0,1},{0,3,1,15,3,35},60] (* Vincenzo Librandi, Nov 25 2011 *)
-
PARI
a(n)=n*(n+2)*(9-7*(-1)^n)/16 \\ Charles R Greathouse IV, Oct 16 2015
-
Sage
[n*(n+2)*(9-7*(-1)^n)/16 for n in (0..60)] # G. C. Greubel, Feb 21 2019
Formula
a(2n) = n*(n+1)/2 = A000217(n).
a(2n+1) = (2*n+1)*(2*n+3) = A000466(n+1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6), n>5.
a(n+1) - a(n) = (7*(-1)^n *(2*n^2+6*n+3) +18*n +27)/16.
G.f. x*(3 +x +6*x^2 -x^4)/(1-x^2)^3. - R. J. Mathar, Oct 25 2011
a(n) = numerator( binomial((n+2)/2,2) ). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: x*((24+x)*cosh(x) + (3+8*x)*sinh(x))/8. - G. C. Greubel, Sep 20 2018
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Aug 12 2022
Comments