A198833 The number of inequivalent ways to color the vertices of a regular octahedron using at most n colors.
1, 10, 56, 220, 680, 1771, 4060, 8436, 16215, 29260, 50116, 82160, 129766, 198485, 295240, 428536, 608685, 848046, 1161280, 1565620, 2081156, 2731135, 3542276, 4545100, 5774275, 7268976, 9073260, 11236456, 13813570, 16865705, 20460496, 24672560, 29583961
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1)
Crossrefs
Cf. A047780 (oriented), A093566(n+1) (chiral), A337898 (achiral), A199406 (edges), A128766 (octahedron faces, cube vertices), A000332(n+3) (tetrahedron), A128766 (octahedron faces, cube vertices), A252705 (dodecahedron faces, icosahedron vertices), A252704 (icosahedron faces, dodecahedron vertices), A000217 (triangular numbers).
Programs
-
Magma
[n*(n+1)*(n^2+n+2)*(n^2+n+4)/48: n in [1..35]]; // Vincenzo Librandi, Aug 04 2013
-
Mathematica
Table[(n^6 + 3 n^5 + 9 n^4 + 13 n^3 + 14 n^2 + 8 n)/48, {n, 25}] CoefficientList[Series[-(1 + 3 x + 7 x^2 + 3 x^3 + x^4) / (x - 1)^7, {x, 0, 35}], x] (* Vincenzo Librandi, Aug 04 2013 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,10,56,220,680,1771,4060},40] (* Harvey P. Dale, Nov 06 2024 *)
-
PARI
a(n)=n*(n+1)*(n^2+n+2)*(n^2+n+4)/48 \\ Charles R Greathouse IV, Aug 02 2013
Formula
a(n) = n*(n+1)*(n^2+n+2)*(n^2+n+4)/48.
G.f.: x*(1+3*x+7*x^2+3*x^3+x^4) / (1-x)^7. - R. J. Mathar, Oct 30 2011
a(n) = 1*C(n,1) + 8*C(n,2) + 29*C(n,3) + 52*C(n,4) + 45*C(n,5) + 15*C(n,6), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
Comments