cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198971 a(n) = 5*10^n - 1.

Original entry on oeis.org

4, 49, 499, 4999, 49999, 499999, 4999999, 49999999, 499999999, 4999999999, 49999999999, 499999999999, 4999999999999, 49999999999999, 499999999999999, 4999999999999999, 49999999999999999, 499999999999999999, 4999999999999999999, 49999999999999999999, 499999999999999999999
Offset: 0

Views

Author

Vincenzo Librandi, Nov 02 2011

Keywords

Comments

Also maximal value of GCD of 2 distinct (n+1)-digit numbers (compare with A126687). - Michel Marcus, Jun 24 2013
Also, a(n) is the largest obtained remainder when an (n+1)-digit number m is divided by any k with 1 <= k <= m. This remainder is obtained when 10^(n+1)-1 is divided by 5*10^n, example: 999 = 500 * 1 + 499, and a(2) = 499. - Bernard Schott, Nov 23 2021
Also numbers k whose digital reversal equals 2*(k - 2). - Stefano Spezia, Sep 15 2024

Crossrefs

Programs

  • Magma
    [5*10^n-1 : n in [0..20]];
    
  • Mathematica
    CoefficientList[Series[(4 + 5*x)/(1 - 11*x + 10*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 03 2013 *)
    LinearRecurrence[{11,-10},{4,49},20] (* Harvey P. Dale, Dec 30 2018 *)
  • PARI
    a(n)=5*10^n-1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 10*a(n-1) + 9.
a(n) = 11*a(n-1) - 10*a(n-2), n>1.
G.f.: (4 + 5*x)/(1 - 11*x + 10*x^2). - Vincenzo Librandi, Jan 03 2013
E.g.f.: exp(x)*(5*exp(9*x) - 1). - Stefano Spezia, Nov 17 2022
a(n) = A086942(n+1)/8 = A086940(n+1)/4 = A099150(n+1)/2. - Elmo R. Oliveira, May 02 2025