cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A033819 Trimorphic numbers: n^3 ends with n. Also m-morphic numbers for all m > 5 such that m-1 is not divisible by 10 and m == 3 (mod 4).

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9376, 9999, 18751, 31249, 40625, 49999, 50001, 59375, 68751, 81249, 90624, 90625
Offset: 1

Views

Author

Keywords

Comments

n is in this sequence iff it occurs in one of A002283, A007185, A016090, A198971, A199685, A216092, A216093, A224473, A224474, A224475, A224476, A224477, and A224478. - Eric M. Schmidt, Apr 08 2013
Let q(n) = floor(a(n)^3 / 10^A055642(a(n))), where A055642(n) is the number of digits in the decimal expansion of n. As well, let na and nb denote the indices of the preceding and next terms that begin with a 9. Then (1/q(n)) * (a(n)^4 - a(n)^3 - a(n)^2 + a(n)) - 2*a(n)^2 + a(n) + q(n) + 1 = a(na+nb-n)^2 - a(na+nb-n) - q(na+nb-n). - Christopher Hohl, Apr 08 2019

Examples

			376^3 = 53157376 which ends with 376.
		

References

  • S. Premchaud, A class of numbers, Math. Student, 48 (1980), 293-300.

Crossrefs

Cf. A074194, A215558 (cubes of the terms).

Programs

  • Magma
    [n: n in [0..10^5] | Intseq(n^3)[1..#Intseq(n)] eq Intseq(n)]; // Bruno Berselli, Apr 04 2013
  • Mathematica
    Do[x=Floor[N[Log[10, n], 25]]+1; If[Mod[n^3, 10^x] == n, Print[n]], {n, 1, 10000}]
    Select[Range[100000],PowerMod[#,3,10^IntegerLength[#]]==#&](* Harvey P. Dale, Nov 04 2011 *)
    Select[Range[0, 10^5], 10^IntegerExponent[#^3-#, 10]>#&] (* Jean-François Alcover, Apr 04 2013 *)

A099150 Positive integers k such that f(k)+f(k)=concatenation of k and k, where f(k)=k(k+3)/2 (A000096).

Original entry on oeis.org

8, 98, 998, 9998, 99998, 999998, 9999998, 99999998, 999999998, 9999999998, 99999999998, 999999999998, 9999999999998, 99999999999998, 999999999999998, 9999999999999998, 99999999999999998, 999999999999999998, 9999999999999999998, 99999999999999999998
Offset: 1

Views

Author

John W. Layman, Sep 30 2004

Keywords

Comments

By the definition, k*(k+3) = k*10^m+k. So k+3 = 10^m+1, that is k = 10^m-2. - Seiichi Manyama, Aug 31 2019

Examples

			99998*(99998+3) = 9999899998 (concatenation of 99998 and 99998).
		

Crossrefs

Programs

  • PARI
    for(k=1, 1e9, if(k*(k+3)==eval(Str(k, k)), print1(k", "))) \\ Seiichi Manyama, Aug 31 2019
    
  • PARI
    {a(n) = 10^n-2} \\ Seiichi Manyama, Aug 31 2019

Formula

a(n) = A002283(n) - 1 = 10^n - 2. - Seiichi Manyama, Aug 31 2019
From Chai Wah Wu, Jun 15 2020: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2.
G.f.: x*(10*x + 8)/((x - 1)*(10*x - 1)). (End)
E.g.f.: 1 - 2*exp(x) + exp(10*x). - Stefano Spezia, May 02 2025
a(n) = 2*A198971(n-1) = A177096(n)/5. - Elmo R. Oliveira, May 02 2025

Extensions

a(9)-a(20) from Seiichi Manyama, Aug 31 2019

A224473 (2*5^(2^n) - 1) mod 10^n: a sequence of trimorphic numbers ending in 9.

Original entry on oeis.org

9, 49, 249, 1249, 81249, 781249, 5781249, 25781249, 425781249, 6425781249, 36425781249, 836425781249, 9836425781249, 19836425781249, 519836425781249, 2519836425781249, 12519836425781249, 512519836425781249, 4512519836425781249, 84512519836425781249
Offset: 1

Views

Author

Eric M. Schmidt, Apr 07 2013

Keywords

Comments

a(n) is the unique positive integer less than 10^n such that a(n) - 1 is divisible by 2^n and a(n) + 1 is divisible by 5^n.

Crossrefs

Cf. A033819. Corresponding 10-adic number is A091661. The other trimorphic numbers ending in 9 are included in A002283, A198971 and A224475.

Programs

  • Sage
    def A224473(n) : return crt(1, -1, 2^n, 5^n);

Formula

a(n) = (2 * A007185(n) - 1) mod 10^n.

A086940 a(n) = k where R(k+4) = 2.

Original entry on oeis.org

16, 196, 1996, 19996, 199996, 1999996, 19999996, 199999996, 1999999996, 19999999996, 199999999996, 1999999999996, 19999999999996, 199999999999996, 1999999999999996, 19999999999999996, 199999999999999996, 1999999999999999996, 19999999999999999996
Offset: 1

Views

Author

Ray Chandler, Jul 24 2003

Keywords

Crossrefs

Programs

  • Magma
    [2*(10^n-2): n in [1..20] ]; // Vincenzo Librandi, Aug 22 2011
  • Mathematica
    Table[FromDigits[Join[PadRight[{1},n,9],{6}]],{n,20}] (* or *) 2 (10^Range[20] - 2) (* or *) LinearRecurrence[{11,-10},{16,196},20] (* Harvey P. Dale, Aug 11 2012 *)

Formula

a(n) = 2*(10^n - 2).
R(a(n)) = A086945(n).
a(n) = 11*a(n-1) - 10*a(n-2); a(1)=16, a(2)=196. - Harvey P. Dale, Aug 11 2012
From Elmo R. Oliveira, Apr 30 2025: (Start)
G.f.: 4*x*(5*x+4)/((x-1)*(10*x-1)).
E.g.f.: 2*(1 - 2*exp(x) + exp(10*x)).
a(n) = 4*A198971(n-1) = A086942(n)/2. (End)

A086942 Integers k such that R(k+8) = 4.

Original entry on oeis.org

32, 392, 3992, 39992, 399992, 3999992, 39999992, 399999992, 3999999992, 39999999992, 399999999992, 3999999999992, 39999999999992, 399999999999992, 3999999999999992, 39999999999999992, 399999999999999992, 3999999999999999992, 39999999999999999992
Offset: 1

Views

Author

Ray Chandler, Jul 24 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 4*10^n - 8.
R(a(n)) = A086943(n).
G.f.: 8*x*(5*x+4)/((10*x-1)*(x-1)).
a(n) = 8*A198971(n-1).
From Elmo R. Oliveira, May 01 2025: (Start)
E.g.f.: 4*(1 - 2*exp(x) + exp(10*x)).
a(n) = 4*A099150(n) = 2*A086940(n).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)

A224475 (2*5^(2^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 9.

Original entry on oeis.org

4, 99, 749, 6249, 31249, 281249, 781249, 75781249, 925781249, 1425781249, 86425781249, 336425781249, 4836425781249, 69836425781249, 19836425781249, 7519836425781249, 62519836425781249, 12519836425781249, 9512519836425781249, 34512519836425781249
Offset: 1

Views

Author

Eric M. Schmidt, Apr 07 2013

Keywords

Comments

a(n) is the unique positive integer less than 10^n such that a(n) + 2^(n-1) - 1 is divisible by 2^n and a(n) + 1 is divisible by 5^n.

Crossrefs

Cf. A033819. Converges to the 10-adic number A091661. The other trimorphic numbers ending in 9 are included in A002283, A198971, and A224473.

Programs

  • Mathematica
    Table[Mod[2*5^2^n+(10^n/2)-1,10^n],{n,20}] (* Harvey P. Dale, Sep 08 2024 *)
  • Sage
    def A224475(n) : return crt(2^(n-1)+1, -1, 2^n, 5^n)

Formula

a(n) = (A224473(n) + 10^n / 2) mod 10^n.

A323639 a(n) = 3*(10^n - 4)/9.

Original entry on oeis.org

-1, 2, 32, 332, 3332, 33332, 333332, 3333332, 33333332, 333333332, 3333333332, 33333333332, 333333333332, 3333333333332, 33333333333332, 333333333333332, 3333333333333332, 33333333333333332, 333333333333333332, 3333333333333333332, 33333333333333333332
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2019

Keywords

Examples

			        (0+1) * (3*0-1) = -1.
        (3+1) * (3*3-1) = 32.
      (33+1) * (3*33-1) = 3332.
    (333+1) * (3*333-1) = 333332.
  (3333+1) * (3*3333-1) = 33333332.
(33333+1) * (3*33333-1) = 3333333332.
-------------------------------------
        8 * 4 = 32.
      68 * 49 = 3332.
    668 * 499 = 333332.
  6668 * 4999 = 33333332.
66668 * 49999 = 3333333332.
		

Crossrefs

Programs

  • Mathematica
    Table[(10^n-4)/3,{n,0,20}] (* or *) LinearRecurrence[{11,-10},{-1,2},21] (* Harvey P. Dale, Jan 09 2021 *)
  • PARI
    {a(n) = 3*(10^n-4)/9}
    
  • PARI
    N=40; x='x+O('x^N); Vec((-1+13*x)/((1-x)*(1-10*x)))

Formula

G.f.: (-1+13*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
a(n) = A002277(n) - 1.
a(n) = 2*A246057(n-1) for n > 0.
a(2*n) = (A002277(n)+1) * (3*A002277(n)-1).
a(2*n) = A073555(n+1) * A198971(n-1) for n > 0.
E.g.f.: exp(x)*(exp(9*x) - 4)/3. - Stefano Spezia, May 02 2025
a(n) = A086948(n)/6 for n >= 1. - Elmo R. Oliveira, May 06 2025

A181607 Numbers n with k digits such that n^2 == 1 (mod 10^k).

Original entry on oeis.org

1, 9, 49, 51, 99, 249, 251, 499, 501, 749, 751, 999, 1249, 3751, 4999, 5001, 6249, 8751, 9999, 18751, 31249, 49999, 50001, 68751, 81249, 99999, 218751, 281249, 499999, 500001, 718751, 781249, 999999, 4218751, 4999999, 5000001, 5781249, 9218751
Offset: 1

Views

Author

Robert G. Wilson v, Nov 01 2010

Keywords

Comments

Least term of n digits: 1, 49, 249, 1249, 18751, 218751, 4218751, ..., .
If n of k digits is present then 10^k-n is present.
The union of A002283, A198971, A199685, A224473, A224474, A224475, and A224476 (except that this sequence omits 0, 4, and 6). - Eric M. Schmidt, Jan 26 2016

Crossrefs

Programs

  • Mathematica
    Table[ Select[ Range[10^(k - 1), 10^k - 1], Mod[ #^2, 10^k] == 1 &], {k, 7}] // Flatten

A126687 Maximal value of GCD of 2 distinct n-digit numbers using the same digits.

Original entry on oeis.org

12, 243, 2475, 28575, 428571, 4928571, 49928571
Offset: 2

Views

Author

Dmitry Tishkov (DimaTishkov(AT)yandex.ru), Feb 14 2007

Keywords

Comments

Without the "same digits" constraint, one would get A198971. - Michel Marcus, Jun 24 2013

Examples

			a(3)=243=GCD(729,972).
		

A177096 a(n) = 5*(10^n - 2).

Original entry on oeis.org

40, 490, 4990, 49990, 499990, 4999990, 49999990, 499999990, 4999999990, 49999999990, 499999999990, 4999999999990, 49999999999990, 499999999999990, 4999999999999990, 49999999999999990, 499999999999999990, 4999999999999999990, 49999999999999999990, 499999999999999999990
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    Vec(10*x*(4+5*x)/(10*x^2-11*x+1) + O(x^21)) \\ Elmo R. Oliveira, May 02 2025

Formula

G.f.: 10*x*(4+5*x)/((10*x-1)*(x-1)). - R. J. Mathar, Jan 06 2011
From Elmo R. Oliveira, May 02 2025: (Start)
E.g.f.: 5*(1 + exp(10*x) - 2*exp(x)).
a(n) = 5*A099150(n) = 10*A198971(n-1).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)

Extensions

More terms from Elmo R. Oliveira, May 02 2025
Showing 1-10 of 10 results.