cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246057 a(n) = (5*10^n - 2)/3.

Original entry on oeis.org

1, 16, 166, 1666, 16666, 166666, 1666666, 16666666, 166666666, 1666666666, 16666666666, 166666666666, 1666666666666, 16666666666666, 166666666666666, 1666666666666666, 16666666666666666, 166666666666666666, 1666666666666666666, 16666666666666666666, 166666666666666666666
Offset: 0

Views

Author

Vincenzo Librandi, Aug 13 2014

Keywords

Comments

a(k-1) = (10^k - 4)/6, together with b(k) = 3*a(k-1) + 2 = A093143(k) and c(k) = 2*a(k-1) + 1 = A002277(k) are k-digit numbers for k >= 1 satisfying the so-called curious cubic identity a(k-1)^3 + b(k)^3 + c(k)^3 = a(k)*10^(2*k) + b(k)*10^k + c(k) (concatenated a(k)b(k)c(k)). This k-family and the proof of the identity has been given in the introduction of the van der Poorten reference. Thanks go to S. Heinemeyer for bringing these identities to my attention. - Wolfdieter Lang, Feb 07 2017

Examples

			Curious cubic identities (see a comment and reference above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
		

Crossrefs

Cf. sequences with terms of the form 1k..k where the digit k is repeated n times: A000042 (k=1), A090843 (k=2), A097166 (k=3), A099914 (k=4), A099915 (k=5), this sequence (k=6), A246058 (k=7), A246059 (k=8), A067272 (k=9).

Programs

  • Magma
    [(5*10^n-2)/3: n in [0..20]];
    
  • Mathematica
    Table[(5 10^n - 2)/3, {n, 0, 20}]
  • PARI
    vector(50, n, (5*10^(n-1)-2)/3) \\ Derek Orr, Aug 13 2014

Formula

G.f.: (1 + 5*x)/((1 - x)*(1 - 10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
E.g.f.: exp(x)*(5*exp(9*x) - 2)/3. - Stefano Spezia, May 02 2025
a(n) = A323639(n+1)/2 = A086948(n+1)/12. - Elmo R. Oliveira, May 07 2025

A086948 a(n) = k where R(k+8) = 2.

Original entry on oeis.org

12, 192, 1992, 19992, 199992, 1999992, 19999992, 199999992, 1999999992, 19999999992, 199999999992, 1999999999992, 19999999999992, 199999999999992, 1999999999999992, 19999999999999992, 199999999999999992, 1999999999999999992, 19999999999999999992, 199999999999999999992
Offset: 1

Views

Author

Ray Chandler, Jul 24 2003

Keywords

Crossrefs

Programs

  • Magma
    [2*(10^n-4): n in [1..25] ]; // Vincenzo Librandi, Aug 22 2011
  • Mathematica
    Table[10*FromDigits[PadRight[{1},n,9]]+2,{n,20}] (* Harvey P. Dale, Dec 15 2017 *)

Formula

a(n) = 2*(10^n - 4).
R(a(n)) = A086947(n).
From Chai Wah Wu, Aug 01 2020: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2.
G.f.: x*(60*x + 12)/((x - 1)*(10*x - 1)). (End)
From Elmo R. Oliveira, May 01 2025: (Start)
E.g.f.: 2*(3 - 4*exp(x) + exp(10*x)).
a(n) = 12*A246057(n-1) = 6*A323639(n). (End)

A322571 Positive integers A270710(k) (= (k+1)*(3*k-1)) which have only 1 or 2 different digits in base 10.

Original entry on oeis.org

4, 15, 32, 55, 84, 119, 455, 799, 900, 3332, 3535, 7007, 8855, 244244, 333332, 335335, 400404, 445444, 555559, 666464, 799799, 1999199, 3303300, 33333332, 33353335, 3333333332, 3333533335, 333333333332, 333335333335, 700007077007, 33333333333332, 33333353333335, 3333333333333332, 3333333533333335
Offset: 1

Views

Author

Seiichi Manyama, Aug 29 2019

Keywords

Crossrefs

Cf. A002277, A018885 (in case of squares), A213516 (in case of triangular numbers), A270710, A322570, A323639.

Programs

  • Magma
    [a:k in [1..10000000]| #Set(Intseq(a)) le 2 where a is (k+1)*(3*k-1)]; // Marius A. Burtea, Aug 29 2019
  • Mathematica
    Select[Table[(n+1)(3n-1),{n,3334*10^4}],Count[DigitCount[#],0]>7&] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    for(k=1, 1e8, if(#Set(digits(j=3*k^2+2*k-1))<=2, print1(j", ")))
    

Formula

a(n) = A270710(A322570(n)).
For k > 0, A002277(2*k) - 1 is a term.
Showing 1-3 of 3 results.