cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199745 Numbers such that the sum of the largest and the smallest prime divisor equals the sum of the other distinct prime divisors.

Original entry on oeis.org

2145, 2730, 4641, 4845, 5005, 5460, 5610, 6435, 7410, 8190, 8778, 9177, 10725, 10920, 11220, 11305, 11730, 13485, 13585, 13650, 13923, 14535, 14820, 16380, 16830, 17017, 17556, 19110, 19305, 20010, 20930, 21489, 21505, 21840, 22230, 22440, 23460, 23529, 23595
Offset: 1

Views

Author

Michel Lagneau, Nov 09 2011

Keywords

Comments

The definition implies that members of the sequence have at least four distinct prime factors. An even term must have at least five distinct prime factors.

Examples

			22440 is in the sequence because the distinct prime divisors are  {2, 3, 5, 11, 17} and 17+2 = 3+5+11.
		

Crossrefs

Programs

  • Haskell
    a199745 n = a199745_list !! (n-1)
    a199745_list = filter (\x -> 2 * (a074320 x) == a008472 x) [1..]
    -- Reinhard Zumkeller, Nov 10 2011
  • Maple
    isA199745 := proc(n)
      local p;
      p := sort(convert(numtheory[factorset](n),list)) ;
      if nops(p) >= 3 then
        return ( op(1,p) + op(-1,p) = add(op(i,p),i=2..nops(p)-1) ) ;
      else
        false;
      end if;
    end proc:
    for n from 2 to 20000 do
      if isA199745(n) then
        printf("%d,",n) ;
      end if ;
    end do: # R. J. Mathar, Nov 10 2011
  • Mathematica
    Select[Range[25000],Plus@@(pl=First/@FactorInteger[#])/2==pl[[1]]+pl[[-1]]&] (* Ray Chandler, Nov 10 2011 *)
  • Sage
    def isA199745(n) :
        p = factor(n)
        return len(p) > 2 and p[0][0] + p[-1][0] == add(p[i][0] for i in (1..len(p)-2))
    [n for n in (2..20000) if isA199745(n)]  # Peter Luschny, Nov 10 2011
    

Formula

n such that A008472(n)/2 = A074320(n) = A020639(n) + A006530 (n). - Ray Chandler, Nov 10 2011
Sum_{k=2..A001221(a(n))} A027748(a(n),k) = A027748(a(n),1) + A027748(a(n), A001221(a(n))). - Reinhard Zumkeller, Nov 10 2011