cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A199772 x-values in the solution to 17*x^2 - 16 = y^2.

Original entry on oeis.org

1, 4, 25, 41, 260, 1649, 2705, 17156, 108809, 178489, 1132036, 7179745, 11777569, 74697220, 473754361, 777141065, 4928884484, 31260608081, 51279532721, 325231678724, 2062726378985, 3383672018521, 21460361911300, 136108680404929, 223271073689665
Offset: 1

Views

Author

Sture Sjöstedt, Nov 10 2011

Keywords

Comments

When are both n+1 and 17*n+1 perfect squares? This problem gives the equation 17*x^2-16=y^2.

Examples

			a(7) = 66*41-1 = 2705.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,66,0,0,-1}, {1,4,25,41,260,1649}, 50]
  • PARI
    Vec(-x*(x-1)*(x^4+5*x^3+30*x^2+5*x+1)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013

Formula

a(n) = 66*a(n-3) - a(n-6), a(1)=1, a(2)=4, a(3)=25, a(4)=41, a(5)=260, a(6)=1649.
G.f.: -x*(x-1)*(x^4+5*x^3+30*x^2+5*x+1) / (x^6-66*x^3+1). - Colin Barker, Sep 01 2013

Extensions

More terms from T. D. Noe, Nov 10 2011

A199774 x-values in the solution to 17*x^2 + 16 = y^2.

Original entry on oeis.org

0, 3, 5, 32, 203, 333, 2112, 13395, 21973, 139360, 883867, 1449885, 9195648, 58321827, 95670437, 606773408, 3848356715, 6312798957, 40037849280, 253933221363, 416549060725, 2641891279072, 16755744253243, 27485925208893, 174324786569472, 1105625187492675
Offset: 1

Views

Author

Sture Sjöstedt, Nov 10 2011

Keywords

Comments

When are both n-1 and 17*n-1 perfect squares? This problem gives the equation 17*x^2+16=y^2.

Examples

			a(7)=66*32-0=2112.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,66,0,0,-1}, {0,3,5,32,203,333}, 50]
  • PARI
    Vec(x^2*(3*x^4+5*x^3+32*x^2+5*x+3)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013

Formula

a(n) = 66*a(n-3) - a(n-6), a(1)=0, a(2)=3, a(3)=5, a(4)=32, a(5)=203, a(6)=333.
G.f.: x^2*(3*x^4+5*x^3+32*x^2+5*x+3) / (x^6-66*x^3+1). - Colin Barker, Sep 01 2013

Extensions

More terms from T. D. Noe, Nov 10 2011

A199798 y-values in the solution to 17*x^2 + 16 = y^2.

Original entry on oeis.org

4, 13, 21, 132, 837, 1373, 8708, 55229, 90597, 574596, 3644277, 5978029, 37914628, 240467053, 394459317, 2501790852, 15867181221, 26028336893, 165080281604, 1046993493533, 1717475775621, 10892796795012, 69085703391957, 113327372854093, 718759508189188
Offset: 1

Views

Author

Sture Sjöstedt, Nov 10 2011

Keywords

Comments

When are both n-1 and 17*n-1 perfect squares? This problem gives the equation 17*x^2+16=y^2.

Examples

			a(7)=66*132-4=8708.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,66,0,0,-1}, {4,13,21,132,837,1373}, 50]
  • PARI
    Vec(-x*(13*x^5+21*x^4+132*x^3-21*x^2-13*x-4)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013

Formula

a(n) = 66*a(n-3) - a(n-6), a(1)=4, a(2)=13, a(3)=21, a(4)=132, a(5)=837, a(6)=1373.
G.f.: -x*(13*x^5+21*x^4+132*x^3-21*x^2-13*x-4) / (x^6-66*x^3+1). - Colin Barker, Sep 01 2013

Extensions

More terms from T. D. Noe, Nov 10 2011

A200409 The y-values in the solution to 19*x^2 - 18 = y^2.

Original entry on oeis.org

1, 39, 571, 911, 13299, 194141, 309739, 4521621, 66007369, 105310349, 1537337841, 22442311319, 35805208921, 522690344319, 7630319841091, 12173665722791, 177713179730619, 2594286303659621, 4139010540540019, 60421958418066141, 882049712924430049
Offset: 1

Views

Author

Sture Sjöstedt, Nov 17 2011

Keywords

Comments

When are both n+1 and 19*n+1 perfect squares? This gives the equation 19*x^2 - 18 = y^2.

Examples

			a(7) = 340*911 - 1 = 309739.
		

Crossrefs

Programs

  • Magma
    I:=[1, 39, 571, 911, 13299, 194141]; [n le 6 select I[n] else 340*Self(n-3)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
    
  • Mathematica
    LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 39, 571, 911, 13299,194141}, 50]
  • PARI
    Vec(x*(x+1)*(x^4+38*x^3+533*x^2+38*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013

Formula

a(n) = 340*a(n-3) - a(n-6), a(1)=1, a(2)=39, a(3)=571, a(4)=911, a(5)=13299, a(6)=194141.
G.f.: x*(x+1)*(x^4 + 38*x^3 + 533*x^2 + 38*x + 1) / (x^6 - 340*x^3 + 1). - Colin Barker, Sep 01 2013

A350544 a(n) is the least prime p such that there exists a prime q with p^2 + n = (n+1)*q^2, or 0 if there is no such p.

Original entry on oeis.org

7, 5, 0, 11, 7, 13, 5, 0, 41, 23, 17, 10496997797584752004430879, 41, 11, 7
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 04 2022

Keywords

Comments

a(16) > 10^1000 if it is not 0.
If it is not 0, then a(16) = A199773(k) where k is the smallest index such that both p = A199773(k) and q = A199772(k) are prime. If such an index exists, a(16) > 10^10000. - Jon E. Schoenfield, Jan 11 2022

Examples

			a(3) = 0 as the only positive integer solution of p^2 + 3 = 4*q^2 is p=1, q=1, and 1 is not prime.
a(4) = 11 as 11^2 + 4 = 125 = (4+1)*5^2 with 11 and 5 prime.
		

Crossrefs

Programs

  • Maple
    # Returned values of -1 indicate that either a(n) = 0 or a(n) > 10^1000.
    f:= proc(n) local m,x,y,S,cf,i,c,a,b,A,M,Sp;
      m:= n+1;
      if issqr(m) then
        S:= [isolve(x^2+n=m*y^2)];
        S:= map(t -> subs(t,[x,y]),S);
        S:= select(t -> andmap(isprime,t),S);
        if S = [] then return 0
        else return min(map(t -> t[1],S))
        fi;
      fi;
      cf:= NumberTheory:-ContinuedFraction(sqrt(m));
      for i from 1 do
        c:= Convergent(cf,i);
        if numer(c)^2 - m*denom(c)^2 = 1 then break fi
      od;
      a:= numer(c); b:= denom(c);
      A:= <|>;
      M:= floor(sqrt(n)*(1+sqrt(a+b*sqrt(m)))/(2*sqrt(m)));
      S:= select(t -> issqr(m*t^2-m+1), [$0..M]);
      S:= select(t -> igcd(t[1],t[2])=1,map(t -> , S));
      S:= map(t -> (t, <-t[1],t[2]>), S);
      if nops(S) = 0 then return 0 fi;
      for i from 0 do
        Sp:= select(t -> isprime(t[1]) and isprime(t[2]),S);
        if nops(Sp)>0 then return min(map(t -> t[1],Sp)) fi;
        S:= map(t -> A.t,S);
        if min(map(t -> t[1],S))>10^1000 then break fi;
      od;
      -1
    end proc:
    map(f, [$1..20]);

Formula

a(n)^2 + n = (n+1)*A350550(n)^2 if a(n) > 0.

A350550 a(n) is the least prime q such that there exists a prime p with p^2 + n = (n+1)*q^2, or 0 if there is no such q.

Original entry on oeis.org

5, 3, 0, 5, 3, 5, 2, 0, 13, 7, 5, 2911343369048029930623841, 11, 3, 2
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 04 2022

Keywords

Comments

a(16) > 10^1000 if it is not 0.
If it is not 0, then a(16) = A199772(k) where k is the smallest index such that both q = A199772(k) and p = A199773(k) are prime. If such an index exists, a(16) > 10^10000. - Jon E. Schoenfield, Jan 11 2022

Examples

			a(3) = 0 as the only positive integer solution of p^2 + 3 = 4*q^2 is p=1, q=1, and 1 is not prime.
a(4) = 5 as 11^2 + 4 = 125 = (4+1)*5^2 with 11 and 5 prime.
		

Crossrefs

Programs

  • Maple
    # Returned values of -1 indicate that either a(n) = 0 or a(n) > 10^1000.
    f:= proc(n) local m, x, y, S, cf, i, c, a, b, A, M, Sp;
      m:= n+1;
      if issqr(m) then
        S:= [isolve(x^2+n=m*y^2)];
        S:= map(t -> subs(t, [x, y]), S);
        S:= select(t -> andmap(isprime, t), S);
        if S = [] then return 0
        else return min(map(t -> t[2], S))
        fi;
      fi;
      cf:= NumberTheory:-ContinuedFraction(sqrt(m));
      for i from 1 do
        c:= Convergent(cf, i);
        if numer(c)^2 - m*denom(c)^2 = 1 then break fi
      od;
      a:= numer(c); b:= denom(c);
      A:= <|>;
      M:= floor(sqrt(n)*(1+sqrt(a+b*sqrt(m)))/(2*sqrt(m)));
      S:= select(t -> issqr(m*t^2-m+1), [$0..M]);
      S:= select(t -> igcd(t[1], t[2])=1, map(t -> , S));
      S:= map(t -> (t, <-t[1], t[2]>), S);
      if nops(S) = 0 then return 0 fi;
      for i from 0 do
        Sp:= select(t -> isprime(t[1]) and isprime(t[2]), S);
        if nops(Sp)>0 then return min(map(t -> t[2], Sp)) fi;
        S:= map(t -> A.t, S);
        if min(map(t -> t[2], S))>10^1000 then break fi;
      od;
      -1
    end proc:
    map(f, [$1..20]);

Formula

A350544(n)^2 + n = (n+1)*a(n)^2 if a(n) > 0.

A200407 The x-values in the solution to 19*x^2 - 18 = y^2.

Original entry on oeis.org

1, 9, 131, 209, 3051, 44539, 71059, 1037331, 15143129, 24159851, 352689489, 5148619321, 8214278281, 119913388929, 1750515426011, 2792830455689, 40770199546371, 595170096224419, 949554140655979, 13861747932377211, 202356082200876449, 322845614992577171
Offset: 1

Views

Author

Sture Sjöstedt, Nov 17 2011

Keywords

Comments

When are both n+1 and 19*n+1 perfect squares? This gives the equation 19*x^2-18=y^2.

Examples

			a(7)=340*209-1=71059.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 9, 131, 209, 3051, 44539}, 50]
  • PARI
    Vec(-x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013

Formula

a(n) = 340*a(n-3)+a(n-6), a(1)=1, a(2)=9, a(3)=131, a(4)=209, a(5)=3051, a(6)=44539.
G.f.: -x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1) / (x^6-340*x^3+1). - Colin Barker, Sep 01 2013
Showing 1-7 of 7 results.