A199772
x-values in the solution to 17*x^2 - 16 = y^2.
Original entry on oeis.org
1, 4, 25, 41, 260, 1649, 2705, 17156, 108809, 178489, 1132036, 7179745, 11777569, 74697220, 473754361, 777141065, 4928884484, 31260608081, 51279532721, 325231678724, 2062726378985, 3383672018521, 21460361911300, 136108680404929, 223271073689665
Offset: 1
-
LinearRecurrence[{0,0,66,0,0,-1}, {1,4,25,41,260,1649}, 50]
-
Vec(-x*(x-1)*(x^4+5*x^3+30*x^2+5*x+1)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A199774
x-values in the solution to 17*x^2 + 16 = y^2.
Original entry on oeis.org
0, 3, 5, 32, 203, 333, 2112, 13395, 21973, 139360, 883867, 1449885, 9195648, 58321827, 95670437, 606773408, 3848356715, 6312798957, 40037849280, 253933221363, 416549060725, 2641891279072, 16755744253243, 27485925208893, 174324786569472, 1105625187492675
Offset: 1
-
LinearRecurrence[{0,0,66,0,0,-1}, {0,3,5,32,203,333}, 50]
-
Vec(x^2*(3*x^4+5*x^3+32*x^2+5*x+3)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A199798
y-values in the solution to 17*x^2 + 16 = y^2.
Original entry on oeis.org
4, 13, 21, 132, 837, 1373, 8708, 55229, 90597, 574596, 3644277, 5978029, 37914628, 240467053, 394459317, 2501790852, 15867181221, 26028336893, 165080281604, 1046993493533, 1717475775621, 10892796795012, 69085703391957, 113327372854093, 718759508189188
Offset: 1
-
LinearRecurrence[{0,0,66,0,0,-1}, {4,13,21,132,837,1373}, 50]
-
Vec(-x*(13*x^5+21*x^4+132*x^3-21*x^2-13*x-4)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A200409
The y-values in the solution to 19*x^2 - 18 = y^2.
Original entry on oeis.org
1, 39, 571, 911, 13299, 194141, 309739, 4521621, 66007369, 105310349, 1537337841, 22442311319, 35805208921, 522690344319, 7630319841091, 12173665722791, 177713179730619, 2594286303659621, 4139010540540019, 60421958418066141, 882049712924430049
Offset: 1
a(7) = 340*911 - 1 = 309739.
-
I:=[1, 39, 571, 911, 13299, 194141]; [n le 6 select I[n] else 340*Self(n-3)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
-
LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 39, 571, 911, 13299,194141}, 50]
-
Vec(x*(x+1)*(x^4+38*x^3+533*x^2+38*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A350544
a(n) is the least prime p such that there exists a prime q with p^2 + n = (n+1)*q^2, or 0 if there is no such p.
Original entry on oeis.org
7, 5, 0, 11, 7, 13, 5, 0, 41, 23, 17, 10496997797584752004430879, 41, 11, 7
Offset: 1
a(3) = 0 as the only positive integer solution of p^2 + 3 = 4*q^2 is p=1, q=1, and 1 is not prime.
a(4) = 11 as 11^2 + 4 = 125 = (4+1)*5^2 with 11 and 5 prime.
-
# Returned values of -1 indicate that either a(n) = 0 or a(n) > 10^1000.
f:= proc(n) local m,x,y,S,cf,i,c,a,b,A,M,Sp;
m:= n+1;
if issqr(m) then
S:= [isolve(x^2+n=m*y^2)];
S:= map(t -> subs(t,[x,y]),S);
S:= select(t -> andmap(isprime,t),S);
if S = [] then return 0
else return min(map(t -> t[1],S))
fi;
fi;
cf:= NumberTheory:-ContinuedFraction(sqrt(m));
for i from 1 do
c:= Convergent(cf,i);
if numer(c)^2 - m*denom(c)^2 = 1 then break fi
od;
a:= numer(c); b:= denom(c);
A:= <|>;
M:= floor(sqrt(n)*(1+sqrt(a+b*sqrt(m)))/(2*sqrt(m)));
S:= select(t -> issqr(m*t^2-m+1), [$0..M]);
S:= select(t -> igcd(t[1],t[2])=1,map(t -> , S));
S:= map(t -> (t, <-t[1],t[2]>), S);
if nops(S) = 0 then return 0 fi;
for i from 0 do
Sp:= select(t -> isprime(t[1]) and isprime(t[2]),S);
if nops(Sp)>0 then return min(map(t -> t[1],Sp)) fi;
S:= map(t -> A.t,S);
if min(map(t -> t[1],S))>10^1000 then break fi;
od;
-1
end proc:
map(f, [$1..20]);
A350550
a(n) is the least prime q such that there exists a prime p with p^2 + n = (n+1)*q^2, or 0 if there is no such q.
Original entry on oeis.org
5, 3, 0, 5, 3, 5, 2, 0, 13, 7, 5, 2911343369048029930623841, 11, 3, 2
Offset: 1
a(3) = 0 as the only positive integer solution of p^2 + 3 = 4*q^2 is p=1, q=1, and 1 is not prime.
a(4) = 5 as 11^2 + 4 = 125 = (4+1)*5^2 with 11 and 5 prime.
-
# Returned values of -1 indicate that either a(n) = 0 or a(n) > 10^1000.
f:= proc(n) local m, x, y, S, cf, i, c, a, b, A, M, Sp;
m:= n+1;
if issqr(m) then
S:= [isolve(x^2+n=m*y^2)];
S:= map(t -> subs(t, [x, y]), S);
S:= select(t -> andmap(isprime, t), S);
if S = [] then return 0
else return min(map(t -> t[2], S))
fi;
fi;
cf:= NumberTheory:-ContinuedFraction(sqrt(m));
for i from 1 do
c:= Convergent(cf, i);
if numer(c)^2 - m*denom(c)^2 = 1 then break fi
od;
a:= numer(c); b:= denom(c);
A:= <|>;
M:= floor(sqrt(n)*(1+sqrt(a+b*sqrt(m)))/(2*sqrt(m)));
S:= select(t -> issqr(m*t^2-m+1), [$0..M]);
S:= select(t -> igcd(t[1], t[2])=1, map(t -> , S));
S:= map(t -> (t, <-t[1], t[2]>), S);
if nops(S) = 0 then return 0 fi;
for i from 0 do
Sp:= select(t -> isprime(t[1]) and isprime(t[2]), S);
if nops(Sp)>0 then return min(map(t -> t[2], Sp)) fi;
S:= map(t -> A.t, S);
if min(map(t -> t[2], S))>10^1000 then break fi;
od;
-1
end proc:
map(f, [$1..20]);
A200407
The x-values in the solution to 19*x^2 - 18 = y^2.
Original entry on oeis.org
1, 9, 131, 209, 3051, 44539, 71059, 1037331, 15143129, 24159851, 352689489, 5148619321, 8214278281, 119913388929, 1750515426011, 2792830455689, 40770199546371, 595170096224419, 949554140655979, 13861747932377211, 202356082200876449, 322845614992577171
Offset: 1
-
LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 9, 131, 209, 3051, 44539}, 50]
-
Vec(-x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
Showing 1-7 of 7 results.
Comments