A199773
y-values in the solution to 17*x^2 - 16 = y^2.
Original entry on oeis.org
1, 16, 103, 169, 1072, 6799, 11153, 70736, 448631, 735929, 4667504, 29602847, 48560161, 307984528, 1953339271, 3204234697, 20322311344, 128890789039, 211430929841, 1340964564176, 8504838737303, 13951237134809, 88483338924272, 561190465872959, 920570219967553
Offset: 1
-
I:=[1,16,103,169,1072,6799]; [n le 6 select I[n] else 66*Self(n-3)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
LinearRecurrence[{0,0,66,0,0,-1}, {1,16,103,169,1072,6799}, 50]
CoefficientList[Series[(x + 1) (x^4 + 15 x^3 + 88 x^2 + 15 x + 1) / (x^6 - 66 x^3 + 1), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 06 2016 *)
-
Vec(x*(x+1)*(x^4+15*x^3+88*x^2+15*x+1)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A199772
x-values in the solution to 17*x^2 - 16 = y^2.
Original entry on oeis.org
1, 4, 25, 41, 260, 1649, 2705, 17156, 108809, 178489, 1132036, 7179745, 11777569, 74697220, 473754361, 777141065, 4928884484, 31260608081, 51279532721, 325231678724, 2062726378985, 3383672018521, 21460361911300, 136108680404929, 223271073689665
Offset: 1
-
LinearRecurrence[{0,0,66,0,0,-1}, {1,4,25,41,260,1649}, 50]
-
Vec(-x*(x-1)*(x^4+5*x^3+30*x^2+5*x+1)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A199774
x-values in the solution to 17*x^2 + 16 = y^2.
Original entry on oeis.org
0, 3, 5, 32, 203, 333, 2112, 13395, 21973, 139360, 883867, 1449885, 9195648, 58321827, 95670437, 606773408, 3848356715, 6312798957, 40037849280, 253933221363, 416549060725, 2641891279072, 16755744253243, 27485925208893, 174324786569472, 1105625187492675
Offset: 1
-
LinearRecurrence[{0,0,66,0,0,-1}, {0,3,5,32,203,333}, 50]
-
Vec(x^2*(3*x^4+5*x^3+32*x^2+5*x+3)/(x^6-66*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A200409
The y-values in the solution to 19*x^2 - 18 = y^2.
Original entry on oeis.org
1, 39, 571, 911, 13299, 194141, 309739, 4521621, 66007369, 105310349, 1537337841, 22442311319, 35805208921, 522690344319, 7630319841091, 12173665722791, 177713179730619, 2594286303659621, 4139010540540019, 60421958418066141, 882049712924430049
Offset: 1
a(7) = 340*911 - 1 = 309739.
-
I:=[1, 39, 571, 911, 13299, 194141]; [n le 6 select I[n] else 340*Self(n-3)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
-
LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 39, 571, 911, 13299,194141}, 50]
-
Vec(x*(x+1)*(x^4+38*x^3+533*x^2+38*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
A200407
The x-values in the solution to 19*x^2 - 18 = y^2.
Original entry on oeis.org
1, 9, 131, 209, 3051, 44539, 71059, 1037331, 15143129, 24159851, 352689489, 5148619321, 8214278281, 119913388929, 1750515426011, 2792830455689, 40770199546371, 595170096224419, 949554140655979, 13861747932377211, 202356082200876449, 322845614992577171
Offset: 1
-
LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 9, 131, 209, 3051, 44539}, 50]
-
Vec(-x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013
Showing 1-5 of 5 results.
Comments