cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A231349 Number of triangles added at n-th stage to the structure of A231348.

Original entry on oeis.org

1, 2, 4, 4, 4, 8, 10, 8, 4, 8, 12, 16, 10, 20, 22, 16, 4, 8, 12, 16, 12, 24, 28, 32, 10, 20, 28, 40, 22, 44, 46, 32, 4, 8, 12, 16, 12, 24, 28, 32, 12, 24, 32, 48, 28, 56, 60, 64, 10, 20, 28, 40, 28, 56, 64, 80, 22, 44, 60, 88, 46, 92, 94, 64
Offset: 1

Views

Author

Omar E. Pol, Dec 15 2013

Keywords

Comments

First differences of A231348.
Observation: the row sums of the first seven rows coincide with the first seven elements of A199923.
Is A199923 the row sums of this triangle?

Examples

			Written as an irregular triangle in which row lengths is A011782 the sequence begins:
1;
2;
4,4;
4,8,10,8;
4,8,12,16,10,20,22,16;
4,8,12,16,12,24,28,32,10,20,28,40,22,44,46,32;
4,8,12,16,12,24,28,32,12,24,32,48,28,56,60,64,10,20,28,40, 28,56,64,80,22,44,60,88,46,92,94,64;
		

Crossrefs

Right border gives A000079.

A086972 a(n) = n*3^(n-1) + (3^n + 1)/2.

Original entry on oeis.org

1, 3, 11, 41, 149, 527, 1823, 6197, 20777, 68891, 226355, 738113, 2391485, 7705895, 24712007, 78918989, 251105873, 796364339, 2518233179, 7942120025, 24988621541, 78452649023, 245818300271, 768835960421, 2400651060089
Offset: 0

Views

Author

Paul Barry, Jul 26 2003

Keywords

Comments

Binomial transform of A057711 (without leading zero). Second binomial transform of (1,1,3,3,5,5,7,7,9,9,11,11,...).

Crossrefs

Partial sums of A199923.

Programs

  • Magma
    [n*3^(n-1) + (3^n+1)/2: n in [0..30]]; // Vincenzo Librandi, Jun 09 2011
    
  • Mathematica
    Table[((2*n+3)*3^(n-1) +1)/2, {n,0,30}] (* G. C. Greubel, Nov 24 2023 *)
  • PARI
    Vec((1-4*x+5*x^2)/((1-x)*(1-3*x)^2) + O(x^40)) \\ Michel Marcus, Mar 08 2016
    
  • SageMath
    [((2*n+3)*3^(n-1) +1)//2 for n in range(31)] # G. C. Greubel, Nov 24 2023

Formula

a(n) = (1/2)*(A081038(n) + 1).
G.f.: (1-4*x+5*x^2)/((1-x)*(1-3*x)^2).
a(n) = A027471(n) + A007051(n).
E.g.f.: (1/2)*( exp(x) + (2*x+1)*exp(3*x) ). - G. C. Greubel, Nov 24 2023

A193730 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (2x+1)^n and q(n,x) = (2x+1)^n.

Original entry on oeis.org

1, 2, 1, 4, 8, 3, 8, 28, 30, 9, 16, 80, 144, 108, 27, 32, 208, 528, 648, 378, 81, 64, 512, 1680, 2880, 2700, 1296, 243, 128, 1216, 4896, 10800, 14040, 10692, 4374, 729, 256, 2816, 13440, 36288, 60480, 63504, 40824, 14580, 2187, 512, 6400, 35328, 112896, 229824, 308448, 272160, 151632, 48114, 6561
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (2,0,0,0,0,0,0,0,...) DELTA (1,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
   1;
   2,   1;
   4,   8,   3;
   8,  28,  30,   9;
  16,  80, 144, 108,  27;
  32, 208, 528, 648, 378, 81;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193730
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return n-k+1;
      else return 2*T(n-1, k) + 3*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 2; b = 1; c = 2; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]     (* A193730 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]     (* A193731 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 2*T[n-1, k] + 3*T[n-1, k-1]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
  • SageMath
    def T(n, k): # T = A193730
        if (k<0 or k>n): return 0
        elif (n<2): return n-k+1
        else: return 2*T(n-1, k) + 3*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023

Formula

T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x*y)/(1-2*x-3*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 20 2023: (Start)
T(n, 0) = A000079(n).
T(n, 1) = A130129(n-1).
T(n, n) = A133494(n).
T(n, n-1) = A199923(n).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A165326(n). (End)

A209998 Triangle of coefficients of polynomials v(n,x) jointly generated with A209996; see the Formula section.

Original entry on oeis.org

1, 2, 3, 2, 8, 9, 2, 10, 30, 27, 2, 10, 46, 108, 81, 2, 10, 50, 198, 378, 243, 2, 10, 50, 242, 810, 1296, 729, 2, 10, 50, 250, 1122, 3186, 4374, 2187, 2, 10, 50, 250, 1234, 4986, 12150, 14580, 6561, 2, 10, 50, 250, 1250, 5946, 21330, 45198, 48114, 19683
Offset: 1

Views

Author

Clark Kimberling, Mar 23 2012

Keywords

Comments

Row n starts 2, 2*5, 2*5^2,... ; ends with 3^(n-1).
Conjecture: penultimate term in row n is A199923(n).
Alternating row sums: A077925
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...3
2...8....9
2...10...30...27
2...10...46...108...81
First three polynomials v(n,x): 1, 2 + 3x , 2 + 8x + 9x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209996 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209998 *)

Formula

u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

Extensions

a(55) corrected by Georg Fischer, Sep 03 2021

A199922 Table read by rows, T(0,0) = 1 and for n>0, 0<=k<=3^(n-1) T(n,k) = gcd(k,3^(n-1)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 81, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 81
Offset: 0

Views

Author

Peter Luschny, Nov 12 2011

Keywords

Examples

			             1
            1, 1
         3, 1, 1, 3
9, 1, 1, 3, 1, 1, 3, 1, 1, 9
		

Crossrefs

Programs

  • Magma
    [1] cat [Gcd(k, 3^(n-1)): k in [0..3^(n-1)], n in [1..6]]; // G. C. Greubel, Nov 24 2023
    
  • Maple
    seq(print(seq(gcd(k,3^(n-1)), k=0..3^(n-1))),n=0..4);
  • Mathematica
    T[n_, k_]:= If[n==0, 1, GCD[k, 3^(n-1)]];
    Table[T[n, k], {n,0,6}, {k,0,3^(n-1)}]//Flatten (* G. C. Greubel, Nov 24 2023 *)
  • SageMath
    def A199922(n,k): return gcd(k, 3^(n-1)) + (2/3)*int(n==0)
    flatten([[A199922(n,k) for k in range(int(3^(n-1))+1)] for n in range(7)]) # G. C. Greubel, Nov 24 2023

Formula

From G. C. Greubel, Nov 24 2023: (Start)
T(n, 3^(n-1) - k) = T(n, k).
Sum_{k=0..3^(n-1)} T(n, k) = A199923(n).
Sum_{k=0..3^(n-1)} (-1)^k * T(n, k) = A000007(n). (End)
Showing 1-5 of 5 results.