cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081038 3rd binomial transform of (1,2,0,0,0,0,0,0,...).

Original entry on oeis.org

1, 5, 21, 81, 297, 1053, 3645, 12393, 41553, 137781, 452709, 1476225, 4782969, 15411789, 49424013, 157837977, 502211745, 1592728677, 5036466357, 15884240049, 49977243081, 156905298045, 491636600541, 1537671920841
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Comments

a(n) is the number of distinguished parts in all compositions of n+1 in which some (possibly all or none) of the parts have been distinguished. a(1) = 2 because we have: 2', 1'+1, 1+1', 1'+1' where we see 5's marking the distinguished parts. With offset=1, a(n) = Sum_{k=1..n} A200139(n,k)*k. - Geoffrey Critzer, Jan 12 2013
For n>=1, a(n-1) the number of ternary strings of length 2n containing the block 11..12 with n ones where no runs of length larger than n are permitted. - Marko Riedel, Mar 08 2016
Binomial transform of {A001787(n + 1)}{n >= 0}. - _Wolfdieter Lang, Oct 01 2019

Crossrefs

Programs

Formula

G.f.: (1-x)/(1-3*x)^2.
a(n) = 6*a(n-1) - 9*a(n-2), with a(0)=1, a(1)=5.
a(n) = (2*n+3)*3^(n-1).
a(n) = Sum_{k=0..n} (k+1)*2^k*binomial(n, k).
a(n) = 2*A086972(n) - 1. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 10 2008
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 9*(sqrt(3)*arctanh(1/sqrt(3)) - 1).
Sum_{n>=0} (-1)^n/a(n) = 9 - 3*sqrt(3)*Pi/2. (End)
E.g.f.: exp(3*x)*(1 + 2*x). - Stefano Spezia, Jan 31 2025

A199923 a(n) = Sum_{k=0..3^(n-1)} gcd(k,3^(n-1)) for n > 0 and a(0) = 1.

Original entry on oeis.org

1, 2, 8, 30, 108, 378, 1296, 4374, 14580, 48114, 157464, 511758, 1653372, 5314410, 17006112, 54206982, 172186884, 545258466, 1721868840, 5423886846, 17046501516, 53464027482, 167365651248, 523017660150, 1631815099668, 5083731656658, 15816054042936
Offset: 0

Views

Author

Peter Luschny, Nov 12 2011

Keywords

Examples

			a(3) = 9 + 1 + 1 + 3 + 1 + 1 + 3 + 1 + 1 + 9.
		

Crossrefs

First differences of A086972.
Row sums of A199922.

Programs

  • Magma
    [1] cat [n le 2 select 2^(2*n-1) else 6*Self(n-1) -9*Self(n-2): n in [1..40]]; // G. C. Greubel, Nov 24 2023
    
  • Mathematica
    LinearRecurrence[{6,-9}, {1,2,8}, 41] (* G. C. Greubel, Nov 24 2023 *)
  • SageMath
    [(2*(n+2)*3^n + 5*int(n==0))//9 for n in range(41)] # G. C. Greubel, Nov 24 2023

Formula

a(n) = 2 * (n+2) * 3^(n-2), n > 0. - Sean A. Irvine, Jun 27 2022
From G. C. Greubel, Nov 24 2023: (Start)
a(n) = (2*(n+2)*3^n + 5*[n=0])/9.
G.f.: (1-4*x+5*x^2)/(1-3*x)^2. [corrected by Jason Yuen, Oct 24 2024]
E.g.f.: (1/9)*( 5 + 2*(2 + 3*x)*exp(3*x) ). (End)

Extensions

More terms from Sean A. Irvine, Jun 27 2022
Showing 1-2 of 2 results.