cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A346627 G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * A(x)^3.

Original entry on oeis.org

1, 0, 1, 2, 7, 23, 82, 300, 1129, 4334, 16914, 66899, 267586, 1080516, 4398850, 18035084, 74402361, 308624282, 1286428765, 5385578256, 22635057148, 95471113565, 403983783772, 1714494024947, 7295949019114, 31124885587680, 133085594104222, 570266646942488
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2021

Keywords

Comments

Inverse binomial transform of A200753.

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = 1/(1 + x) + x A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = (-1)^n + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 27}]
    Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 27}]

Formula

G.f.: Sum_{k>=0} ( binomial(3*k,k) / (2*k + 1) ) * x^k / (1 + x)^(2*k+1).
a(n) = (-1)^n + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+k,n-k) * binomial(3*k,k) / (2*k + 1).
a(n) ~ sqrt(198 + 38*sqrt(33)) * (19 + 3*sqrt(33))^n / (9 * sqrt(Pi) * n^(3/2) * 2^(3*n + 3)). - Vaclav Kotesovec, Jul 30 2021

A200754 G.f. satisfies A(x) = 1 + x*A(x)^4 - x^2*A(x)^5.

Original entry on oeis.org

1, 1, 3, 13, 67, 380, 2288, 14351, 92737, 613063, 4126289, 28179766, 194780822, 1360053081, 9578997279, 67971291791, 485464864401, 3487203531460, 25176899072984, 182598098616625, 1329716528758651, 9718954060263384, 71273846758123552, 524279847227139350
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

Compare to the g.f. G(x) for the ternary tree numbers (A001764): G(x) = 1 + x*G(x)^4 - x^2*G(x)^6 = 1 + x*G(x)^3.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 67*x^4 + 380*x^5 + 2288*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 515*x^4 + 3068*x^5 + 19092*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 780*x^4 + 4741*x^5 + 29915*x^6 +...
where a(2) = 4 - 1; a(3) = 18 - 5; a(4) = 92 - 25; a(5) = 515 - 135; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*A^4-x^2*A^5+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+3*k+1, k)*binomial(k, n-k)/(n+3*k+1)); \\ Seiichi Manyama, Nov 01 2023

Formula

Recurrence: 3*n*(n+1)*(3*n - 1)*(3*n + 1)*(1280*n^7 - 17280*n^6 + 94466*n^5 - 266799*n^4 + 407516*n^3 - 311946*n^2 + 81648*n + 12420)*a(n) = n*(281600*n^10 - 3942400*n^9 + 22465080*n^8 - 65757900*n^7 + 98435187*n^6 - 46293273*n^5 - 73831865*n^4 + 131625925*n^3 - 85490202*n^2 + 25470288*n - 2915460)*a(n-1) + (263680*n^11 - 4087040*n^10 + 26682396*n^9 - 96110406*n^8 + 210443037*n^7 - 293037231*n^6 + 270493529*n^5 - 181862299*n^4 + 103208358*n^3 - 47593224*n^2 + 12881700*n - 1360800)*a(n-2) - 5*(640000*n^11 - 10880000*n^10 + 78609000*n^9 - 311686500*n^8 + 721945299*n^7 - 918913929*n^6 + 367548335*n^5 + 642045653*n^4 - 1081692258*n^3 + 697174344*n^2 - 208955268*n + 24222240)*a(n-3) + 5*(5*n - 18)*(5*n - 16)*(5*n - 14)*(5*n - 12)*(1280*n^7 - 8320*n^6 + 17666*n^5 - 8869*n^4 - 15820*n^3 + 22148*n^2 - 9282*n + 1305)*a(n-4). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ s*sqrt((2*r*s-1) / (2*Pi*(5*r*s-3))) / (2*n^(3/2)*r^n), where r = 0.1272568969777848138753091632571986265610307654216... and s = 1.358291097397172238669759690645074441686961930838... are roots of the system of equations s + r^2*s^5 = 1 + r*s^4, 1 + 5*r^2*s^4 = 4*r*s^3. - Vaclav Kotesovec, Nov 18 2017
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+3*k+1,k) * binomial(k,n-k)/(n+3*k+1). - Seiichi Manyama, Nov 01 2023

A137265 G.f. y(x) is solution of x y^3 - (1 + x^2) y + 1 = 0 with y(0) = 1.

Original entry on oeis.org

1, 1, 2, 8, 35, 163, 796, 4024, 20885, 110654, 596064, 3254752, 17974893, 100227022, 563482140, 3190633232, 18179765509, 104158703503, 599698459613, 3467978715612, 20134256546896, 117313279477959, 685756774642494, 4020515276730588, 23636036336651811
Offset: 0

Views

Author

Robert Israel, Mar 12 2008

Keywords

Examples

			a(3) = 8 because g(x) = 1 + x + 2 x^2 + 8 x^3 + O(x^4) satisfies x*g(x)^3 - (1 + x^2)*g(x) + 1 = O(x^4).
		

Crossrefs

Programs

  • Maple
    f:= (x,y) -> x*y^3 - (1 + x^2)*y + 1; N:= (y,n) -> convert(normal(taylor(y-f(x,y)/D[2](f)(x,y),x=0,n)),polynom); Y:= 1; for j from 1 to 6 do Y:= N(Y,2^j) end do; seq(coeftayl(Y,x=0,j),j=0..2^6-1);
  • Mathematica
    max = 22; g[x_] := Sum[a[k]*x^k, {k, 0, max}]; coes = CoefficientList[ Series[ x*g[x]^3 - (1+x^2)*g[x] + 1, {x, 0, max}], x]; sol = First[ Solve[ Thread[ coes == 0 ] ] ]; Table[a[n] /. sol, {n, 0, max}](* Jean-François Alcover, Nov 28 2011 *)
    terms = 25; y[] = 1; Do[y[x] = (1 + x*y[x]^3)/(1 + x^2) + O[x]^terms, terms]; CoefficientList[y[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1)); \\ Seiichi Manyama, Nov 02 2023

Formula

a(0) = 1, a(1) = 1, a(n) = -a(n-2) + sum_{i=0}^{n-1} sum_{j=0}^{n-1-i} a(i) a(j) a(n-1-i-j).
a(n) ~ sqrt(1 - (2*r)^(5/3)) / (2^(4/3) * sqrt(3*Pi) * n^(3/2) * r^(n + 1/3)), where r = 0.15978798947663136723274504893788499231133813071845... is the real root of the equation (1+r^2)^3 = 27*r/4. - Vaclav Kotesovec, May 03 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k) / (2*n-4*k+1). - Seiichi Manyama, Nov 02 2023

A200755 G.f. satisfies A(x) = 1 + x*A(x)^3 - x^2*A(x)^2.

Original entry on oeis.org

1, 1, 2, 7, 29, 129, 602, 2910, 14447, 73234, 377487, 1972568, 10425930, 55640282, 299403552, 1622701202, 8850030065, 48534971244, 267486182192, 1480673755443, 8228819436898, 45895682480965, 256815165790211, 1441321638029496, 8111194646903282
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

Compare to the g.f. C(x) for the Catalan numbers (A000108): C(x) = 1 + x*C(x)^3 - x^2*C(x)^4 = 1 + x*C(x)^2.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 129*x^5 + 602*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 76*x^4 + 344*x^5 + 1627*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 34*x^3 + 147*x^4 + 678*x^5 + 3254*x^6 +...
where a(2) = 3 - 1; a(3) = 9 - 2; a(4) = 34 - 5; a(5) = 147 - 18; ...
		

Crossrefs

Programs

  • Mathematica
    nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1 + x*AGF^3 - x^2*AGF^2 - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
  • PARI
    a(n)=local(A=1+x);for(i=1,n,A=1+x*A^3-x^2*A^2+x*O(x^n));polcoeff(A,n);
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-4*k, k)*binomial(3*n-5*k, n-2*k)/(2*n-3*k+1)); \\ Seiichi Manyama, Nov 02 2023

Formula

Recurrence: 2*n*(2*n+1)*(244*n^3 - 1713*n^2 + 3767*n - 2550)*a(n) = 3*(2196*n^5 - 17613*n^4 + 49628*n^3 - 59841*n^2 + 30478*n - 5184)*a(n-1) - 18*(244*n^5 - 2323*n^4 + 8013*n^3 - 12252*n^2 + 7774*n - 1260)*a(n-2) - (n-4)*(244*n^4 - 1713*n^3 + 4172*n^2 - 3333*n - 378)*a(n-3) - 36*(n-5)*(n-3)*(5*n + 2)*a(n-4) - 4*(n-6)*(n-4)*(244*n^3 - 981*n^2 + 1073*n - 252)*a(n-5). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 5.991151107674316485... is the root of the equation -4 - 4*d - 5*d^2 - 23*d^3 + 4*d^4 = 0 and c = 0.214566307956522153666714736272121899143... - Vaclav Kotesovec, Sep 10 2013
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-4*k,k) * binomial(3*n-5*k,n-2*k) / (2*n-3*k+1). - Seiichi Manyama, Nov 02 2023

A367017 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 - x).

Original entry on oeis.org

1, 1, 4, 25, 185, 1495, 12776, 113534, 1038535, 9713905, 92480570, 893215584, 8730601596, 86198356180, 858388634250, 8611765147660, 86958794304735, 883103159075400, 9013769253136005, 92419535419392485, 951446700812718515, 9831013564639954705
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, n-k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k,n-k) * A002294(k).

A374553 Number of length n inversion sequences avoiding the patterns 010 and 102.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 186, 707, 2763, 11024, 44714, 183830, 764374, 3209031, 13584217, 57918257, 248502212, 1072159593, 4648747281, 20245772943, 88524364619, 388469248937, 1710304847176, 7552480937589, 33442335151831, 148456424569164, 660560252794208
Offset: 0

Views

Author

Benjamin Testart, Jul 17 2024

Keywords

Crossrefs

Formula

G.f. F(x) is algebraic with minimal polynomial x * (x^2 - x + 1)*(x - 1)^2 * F(x)^3 + 2*x*(x - 1)*(2*x^2 - 2*x + 1)*F(x)^2 - (x^4 - 8*x^3 + 11*x^2 - 6*x + 1)*F(x) - (2*x - 1)*(x - 1)^2.

A367016 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 - x).

Original entry on oeis.org

1, 1, 3, 14, 78, 475, 3057, 20446, 140702, 989789, 7085635, 51451482, 378049810, 2805616460, 20999408480, 158337719608, 1201585477436, 9170328295222, 70339328959266, 541953619822062, 4192560258116202, 32552250308843605, 253583917423039079
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k,n-k) * A002293(k).

A367027 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3 - x^2*A(x)^5.

Original entry on oeis.org

1, 1, 2, 4, 5, -13, -147, -816, -3534, -12650, -35420, -53040, 199056, 2391340, 14555740, 68264112, 261045693, 769660569, 1167906402, -5145668100, -61758940705, -385813067255, -1857144860445, -7266981925560, -21793022441775, -32643056947527, 161919845140752
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-k, k)*binomial(3*n-2*k, n-2*k))/(2*n+1);

Formula

a(n) = (1/(2*n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(3*n-k,k) * binomial(3*n-2*k,n-2*k).
G.f.: ( (1/x) * Series_Reversion( x * (1-x+x^2)^2 ) )^(1/2). - Seiichi Manyama, Mar 08 2025

A374554 Number of length n inversion sequences avoiding the patterns 100 and 102.

Original entry on oeis.org

1, 1, 2, 6, 21, 80, 318, 1305, 5487, 23535, 102603, 453400, 2026408, 9144361, 41607161, 190675552, 879318056, 4077566276, 19001732690, 88940105945, 417948841012, 1971086634986, 9326180071850, 44258248464408, 210605264950063, 1004694354945863, 4804017049287049
Offset: 0

Views

Author

Benjamin Testart, Jul 17 2024

Keywords

Crossrefs

Showing 1-9 of 9 results.