A346627
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * A(x)^3.
Original entry on oeis.org
1, 0, 1, 2, 7, 23, 82, 300, 1129, 4334, 16914, 66899, 267586, 1080516, 4398850, 18035084, 74402361, 308624282, 1286428765, 5385578256, 22635057148, 95471113565, 403983783772, 1714494024947, 7295949019114, 31124885587680, 133085594104222, 570266646942488
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = 1/(1 + x) + x A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = (-1)^n + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 27}]
Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 27}]
A200754
G.f. satisfies A(x) = 1 + x*A(x)^4 - x^2*A(x)^5.
Original entry on oeis.org
1, 1, 3, 13, 67, 380, 2288, 14351, 92737, 613063, 4126289, 28179766, 194780822, 1360053081, 9578997279, 67971291791, 485464864401, 3487203531460, 25176899072984, 182598098616625, 1329716528758651, 9718954060263384, 71273846758123552, 524279847227139350
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 67*x^4 + 380*x^5 + 2288*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 515*x^4 + 3068*x^5 + 19092*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 780*x^4 + 4741*x^5 + 29915*x^6 +...
where a(2) = 4 - 1; a(3) = 18 - 5; a(4) = 92 - 25; a(5) = 515 - 135; ...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*A^4-x^2*A^5+x*O(x^n));polcoeff(A,n)}
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+3*k+1, k)*binomial(k, n-k)/(n+3*k+1)); \\ Seiichi Manyama, Nov 01 2023
A137265
G.f. y(x) is solution of x y^3 - (1 + x^2) y + 1 = 0 with y(0) = 1.
Original entry on oeis.org
1, 1, 2, 8, 35, 163, 796, 4024, 20885, 110654, 596064, 3254752, 17974893, 100227022, 563482140, 3190633232, 18179765509, 104158703503, 599698459613, 3467978715612, 20134256546896, 117313279477959, 685756774642494, 4020515276730588, 23636036336651811
Offset: 0
a(3) = 8 because g(x) = 1 + x + 2 x^2 + 8 x^3 + O(x^4) satisfies x*g(x)^3 - (1 + x^2)*g(x) + 1 = O(x^4).
-
f:= (x,y) -> x*y^3 - (1 + x^2)*y + 1; N:= (y,n) -> convert(normal(taylor(y-f(x,y)/D[2](f)(x,y),x=0,n)),polynom); Y:= 1; for j from 1 to 6 do Y:= N(Y,2^j) end do; seq(coeftayl(Y,x=0,j),j=0..2^6-1);
-
max = 22; g[x_] := Sum[a[k]*x^k, {k, 0, max}]; coes = CoefficientList[ Series[ x*g[x]^3 - (1+x^2)*g[x] + 1, {x, 0, max}], x]; sol = First[ Solve[ Thread[ coes == 0 ] ] ]; Table[a[n] /. sol, {n, 0, max}](* Jean-François Alcover, Nov 28 2011 *)
terms = 25; y[] = 1; Do[y[x] = (1 + x*y[x]^3)/(1 + x^2) + O[x]^terms, terms]; CoefficientList[y[x], x] (* Jean-François Alcover, Jan 11 2018 *)
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1)); \\ Seiichi Manyama, Nov 02 2023
A200755
G.f. satisfies A(x) = 1 + x*A(x)^3 - x^2*A(x)^2.
Original entry on oeis.org
1, 1, 2, 7, 29, 129, 602, 2910, 14447, 73234, 377487, 1972568, 10425930, 55640282, 299403552, 1622701202, 8850030065, 48534971244, 267486182192, 1480673755443, 8228819436898, 45895682480965, 256815165790211, 1441321638029496, 8111194646903282
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 129*x^5 + 602*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 76*x^4 + 344*x^5 + 1627*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 34*x^3 + 147*x^4 + 678*x^5 + 3254*x^6 +...
where a(2) = 3 - 1; a(3) = 9 - 2; a(4) = 34 - 5; a(5) = 147 - 18; ...
-
nmax=20; aa=ConstantArray[0,nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[1 + x*AGF^3 - x^2*AGF^2 - AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
-
a(n)=local(A=1+x);for(i=1,n,A=1+x*A^3-x^2*A^2+x*O(x^n));polcoeff(A,n);
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-4*k, k)*binomial(3*n-5*k, n-2*k)/(2*n-3*k+1)); \\ Seiichi Manyama, Nov 02 2023
A367017
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 - x).
Original entry on oeis.org
1, 1, 4, 25, 185, 1495, 12776, 113534, 1038535, 9713905, 92480570, 893215584, 8730601596, 86198356180, 858388634250, 8611765147660, 86958794304735, 883103159075400, 9013769253136005, 92419535419392485, 951446700812718515, 9831013564639954705
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, n-k)*binomial(5*k, k)/(4*k+1));
A374553
Number of length n inversion sequences avoiding the patterns 010 and 102.
Original entry on oeis.org
1, 1, 2, 5, 15, 51, 186, 707, 2763, 11024, 44714, 183830, 764374, 3209031, 13584217, 57918257, 248502212, 1072159593, 4648747281, 20245772943, 88524364619, 388469248937, 1710304847176, 7552480937589, 33442335151831, 148456424569164, 660560252794208
Offset: 0
- Benjamin Testart, Table of n, a(n) for n = 0..700
- Jay Pantone, The enumeration of inversion sequences avoiding the patterns 201 and 210, arXiv:2310.19632 [math.CO], 2023.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024.
- Benjamin Testart, Generating trees growing on the left for pattern-avoiding inversion sequences, arXiv:2411.05726 [math.CO], 2024.
A367016
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 - x).
Original entry on oeis.org
1, 1, 3, 14, 78, 475, 3057, 20446, 140702, 989789, 7085635, 51451482, 378049810, 2805616460, 20999408480, 158337719608, 1201585477436, 9170328295222, 70339328959266, 541953619822062, 4192560258116202, 32552250308843605, 253583917423039079
Offset: 0
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, n-k)*binomial(4*k, k)/(3*k+1));
A367027
G.f. A(x) satisfies A(x) = 1 + x*A(x)^3 - x^2*A(x)^5.
Original entry on oeis.org
1, 1, 2, 4, 5, -13, -147, -816, -3534, -12650, -35420, -53040, 199056, 2391340, 14555740, 68264112, 261045693, 769660569, 1167906402, -5145668100, -61758940705, -385813067255, -1857144860445, -7266981925560, -21793022441775, -32643056947527, 161919845140752
Offset: 0
-
a(n) = sum(k=0, n\2, (-1)^k*binomial(3*n-k, k)*binomial(3*n-2*k, n-2*k))/(2*n+1);
A374554
Number of length n inversion sequences avoiding the patterns 100 and 102.
Original entry on oeis.org
1, 1, 2, 6, 21, 80, 318, 1305, 5487, 23535, 102603, 453400, 2026408, 9144361, 41607161, 190675552, 879318056, 4077566276, 19001732690, 88940105945, 417948841012, 1971086634986, 9326180071850, 44258248464408, 210605264950063, 1004694354945863, 4804017049287049
Offset: 0
Showing 1-9 of 9 results.
Comments