A051213 Numbers of the form 2^x-y^2 >= 0.
0, 1, 2, 3, 4, 7, 8, 12, 15, 16, 23, 28, 31, 32, 39, 47, 48, 55, 60, 63, 64, 71, 79, 87, 92, 103, 112, 119, 124, 127, 128, 135, 151, 156, 175, 183, 188, 192, 199, 207, 220, 223, 231, 240, 247, 252, 255, 256, 271, 284, 287, 295, 316, 343, 348, 367, 368, 375, 391, 399, 412, 431, 448
Offset: 1
Keywords
Links
- M. F. Hasler, Table of n, a(n) for n = 1..72
- J. Cohn, The diophantine equation x^2+C=y^n, Acta Arithm. 65 (4) (1993) 367-381
- Fadwa S. Abu Muriefah, Yann Bugeaud, The diophantine equation x^2+c=y^n: a brief overview, Rev. Colomb. Matem. 40 (1) (2006) 31-37
Crossrefs
Cf. A201125.
Programs
-
Mathematica
max = 1000; Clear[f]; f[m_] := f[m] = Select[Table[2^x - y^2, {x, 0, m}, {y, 0, Ceiling[2^(x/2)]}] // Flatten // Union, 0 <= # <= max &]; f[1]; f[m = 2]; While[f[m] != f[m - 1], m++]; Print["m = ", m]; A051213 = f[m] (* Jean-François Alcover, May 13 2017 *)
-
PARI
is_A051213(n)=!A200522(n) \\ M. F. Hasler, Oct 09 2014
Extensions
More terms from M. F. Hasler, Oct 09 2014
Comments