A201279 a(n) = 6n^2 + 10n + 5.
5, 21, 49, 89, 141, 205, 281, 369, 469, 581, 705, 841, 989, 1149, 1321, 1505, 1701, 1909, 2129, 2361, 2605, 2861, 3129, 3409, 3701, 4005, 4321, 4649, 4989, 5341, 5705, 6081, 6469, 6869, 7281, 7705, 8141, 8589, 9049, 9521, 10005, 10501, 11009, 11529, 12061
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Yuriy Sibirmovsky, Diagonals of a 'graphene' number spiral.
- Leo Tavares, Illustration: Diamond Frame Stars
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[6*n^2 + 10*n + 5: n in [0..60]]; // Vincenzo Librandi, Dec 01 2011
-
Mathematica
LinearRecurrence[{3,-3,1},{5,21,49},50] (* Vincenzo Librandi, Dec 01 2011 *) Table[6 n^2 + 10 n + 5, {n, 0, 44}] (* or *) CoefficientList[Series[(1 + x) (5 + x)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)
-
PARI
a(n)=6*n^2+10*n+5 \\ Charles R Greathouse IV, Nov 29 2011
Formula
G.f.: (1+x)*(5+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 1 + A033579(n+1). - Omar E. Pol, Jul 18 2012
From Leo Tavares, Nov 24 2021: (Start)
Comments