cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201509 Irregular triangle read by rows: T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 1, 8, 12, 4, 16, 28, 13, 1, 32, 64, 38, 6, 64, 144, 104, 25, 1, 128, 320, 272, 88, 8, 256, 704, 688, 280, 41, 1, 512, 1536, 1696, 832, 170, 10, 1024, 3328, 4096, 2352, 620, 61, 1, 2048, 7168
Offset: 0

Views

Author

Paul Curtz, Dec 02 2011

Keywords

Comments

This is the pseudo-triangle whose successive lines are of the type T(n,0), T(n,1)+T(n-1,0), T(n,2)+T(n-1,1), ... T(n,k)+T(n-1,k-1), without 0's, with T=A201701. [e-mail, Philippe Deléham, Dec 04 2011]

Examples

			Triangle starts:
    1   1
    2   2
    4   5   1
    8  12   4
   16  28  13  1
   32  64  38  6
   64 144 104 25 1
  128 320 272 88 8
  ...
Triangle begins (full version):
    0
    1,   1
    2,   2,   0
    4,   5,   1,  0
    8,  12,   4,  0, 0
   16,  28,  13,  1, 0, 0
   32,  64,  38,  6, 0, 0, 0
   64, 144, 104, 25, 1, 0, 0, 0
  128, 320, 272, 88, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A052542 (row sums).

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k. - Philippe Deléham, Dec 05 2011
The n-th row polynomial appears to equal Sum_{k = 1..floor((n+1)/2)} binomial(n,2*k-1)*(1+t)^k. Cf. A034867. - Peter Bala, Sep 10 2012
Aside from the first two rows below, the signed coefficients appear in the expansion (b*x - 1)^2 / (a*b*x^2 - 2a*x + 1) = 1 + (2 a - 2 b)x + (4 a^2 - 5 a b + b^2)x^2 + (8 a^3 - 12 a^2b + 4 ab^2)x^3 + ..., the reciprocal of the derivative of x*(1-a*x) / (1-b*x). This is related to A263633 via the expansion (a*b*x^2 - 2a*x + 1) / (b*x - 1)^2 = 1 + (b - a) (2x + 3b x^2 + 4b^2 x^3 + ...). See also A201780. - Tom Copeland, Oct 30 2023

Extensions

Edited and new name using Philippe Deléham's formula, Joerg Arndt, Dec 13 2023