cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A247541 a(n) = 7*n^2 + 1.

Original entry on oeis.org

1, 8, 29, 64, 113, 176, 253, 344, 449, 568, 701, 848, 1009, 1184, 1373, 1576, 1793, 2024, 2269, 2528, 2801, 3088, 3389, 3704, 4033, 4376, 4733, 5104, 5489, 5888, 6301, 6728, 7169, 7624, 8093, 8576, 9073, 9584, 10109, 10648, 11201, 11768, 12349, 12944, 13553
Offset: 0

Views

Author

Karl V. Keller, Jr., Sep 18 2014

Keywords

Crossrefs

Cf. A201602 (primes of the form 7n^2 + 1).

Programs

  • Magma
    [7*n^2+1: n in [0..50]]; // Vincenzo Librandi, Sep 19 2014
  • Mathematica
    a247541[n_Integer] := 7 n^2 + 1; a247541 /@ Range[0, 120] (* Michael De Vlieger, Sep 18 2014 *)
    CoefficientList[Series[(1 + 5 x + 8 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 19 2014 *)
    LinearRecurrence[{3,-3,1},{1,8,29},50] (* Harvey P. Dale, Jun 09 2015 *)
  • PARI
    vector(100,n,7*(n-1)^2+1) \\ Derek Orr, Sep 18 2014
    
  • Python
    for n in range (0,500) : print (7*n**2+1)
    

Formula

G.f.: (1 + 5*x + 8*x^2)/(1 - x)^3. - Vincenzo Librandi, Sep 19 2014
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(7))*coth(Pi/sqrt(7)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(7))*csch(Pi/sqrt(7)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(7))*sinh(sqrt(2/7)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(7))*csch(Pi/sqrt(7)). (End)
E.g.f.: exp(x)*(1 + 7*x + 7*x^2). - Stefano Spezia, Feb 05 2021

A247965 a(n) is the smallest number k such that m*k^2+1 is prime for all m = 1 to n.

Original entry on oeis.org

1, 1, 6, 3240, 113730, 30473520, 3776600100, 16341921960, 3332396388090
Offset: 1

Views

Author

Michel Lagneau, Sep 28 2014

Keywords

Comments

Conjecture : the sequence is infinite.
a(10) > 15466500000000. a(11) > 107669100000000. - Hiroaki Yamanouchi, Oct 01 2014

Examples

			a(3)=6 because 6^2+1 = 37, 2*6^2+1 = 73 and 3*6^2+1 = 109 are prime numbers.
The resulting primes begin like this:
2;
2, 3;
37, 73, 109;
10497601, 20995201, 31492801, 41990401;
... - _Michel Marcus_, Sep 29 2014
		

Crossrefs

Programs

  • Maple
    for n from 1 to 6 do:
      ii:=0:
       for k from 1 to 10^10 while(ii=0) do:
         ind:=0:
           for m from 1 to n do:
             p:=m*k^2+1:
              if type(p,prime) then
               ind:=ind+1:
               fi:
            od:
           if ind=n then
            ii:=1:printf ( "%d %d \n",n,k):
           fi:
        od:
      od:
  • PARI
    a(n)=k=1;while(k,c=0;for(i=1,n,if(!ispseudoprime(i*k^2+1),c++;break));if(!c,return(k));if(c,k++))
    n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Sep 28 2014

Extensions

a(7)-a(9) from Hiroaki Yamanouchi, Oct 01 2014
Showing 1-2 of 2 results.