A201685 Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.
1, 2, 1, 9, 6, 2, 64, 48, 24, 6, 625, 500, 300, 120, 24, 7776, 6480, 4320, 2160, 720, 120, 117649, 100842, 72030, 41160, 17640, 5040, 720, 2097152, 1835008, 1376256, 860160, 430080, 161280, 40320, 5040, 43046721, 38263752, 29760696, 19840464, 11022480, 4898880, 1632960, 362880, 40320
Offset: 1
Examples
Triangle begins as: 1; 2, 1; 9, 6, 2; 64, 48, 24, 6; 625, 500, 300, 120, 24; 7776, 6480, 4320, 2160, 720, 120;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
GAP
Flat(List([1..12], n-> List([1..n], k-> Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1) ))); # G. C. Greubel, Jan 08 2020
-
Magma
[Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 08 2020
-
Maple
T:= (n, k)-> binomial(n-1, k-1)*n^(n-k)*(k-1)!: seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 14 2013
-
Mathematica
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Map[f, Drop[Range[0, 10]! CoefficientList[Series[Log[1/(1 - y t)], {x, 0, 10}], {x, y}], 1]] // Grid
-
PARI
T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!; \\ G. C. Greubel, Jan 08 2020
-
Sage
[[binomial(n-1,k-1)*n^(n-k)*factorial(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jan 08 2020
Formula
E.g.f.: log(1/(1-y*A(x))) where A(x) is the e.g.f. for A000169.
T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!. - Geoffrey Critzer, May 13 2013
Comments