cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201685 Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.

Original entry on oeis.org

1, 2, 1, 9, 6, 2, 64, 48, 24, 6, 625, 500, 300, 120, 24, 7776, 6480, 4320, 2160, 720, 120, 117649, 100842, 72030, 41160, 17640, 5040, 720, 2097152, 1835008, 1376256, 860160, 430080, 161280, 40320, 5040, 43046721, 38263752, 29760696, 19840464, 11022480, 4898880, 1632960, 362880, 40320
Offset: 1

Views

Author

Geoffrey Critzer, Dec 03 2011

Keywords

Comments

Column k=1: A000169,
Column k=2: A053506,
Column k=3: A065513.
Row sums: A001865.
T(n,n) = (n-1)!, T(n,n-1) = n!.
Sum_{k=1..n} T(n,k)*k = n^n. - Geoffrey Critzer, May 13 2013
From the asymptotic given by N-E. Fahssi in A001865, we see the expected size of the cycle grows as (2*n/Pi)^(1/2). - Geoffrey Critzer, May 13 2013
Central terms: A277168. - Paul D. Hanna, Oct 01 2016

Examples

			Triangle begins as:
     1;
     2,    1;
     9,    6,    2;
    64,   48,   24,    6;
   625,  500,  300,  120,  24;
  7776, 6480, 4320, 2160, 720, 120;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1) ))); # G. C. Greubel, Jan 08 2020
  • Magma
    [Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 08 2020
    
  • Maple
    T:= (n, k)-> binomial(n-1, k-1)*n^(n-k)*(k-1)!:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Aug 14 2013
  • Mathematica
    f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Map[f, Drop[Range[0, 10]! CoefficientList[Series[Log[1/(1 - y t)], {x, 0, 10}], {x, y}], 1]] // Grid
  • PARI
    T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!; \\ G. C. Greubel, Jan 08 2020
    
  • Sage
    [[binomial(n-1,k-1)*n^(n-k)*factorial(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jan 08 2020
    

Formula

E.g.f.: log(1/(1-y*A(x))) where A(x) is the e.g.f. for A000169.
T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!. - Geoffrey Critzer, May 13 2013