cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105309 a(n) = |b(n)|^2 = x^2 + 3*y^2 where (x,y,y,y) is the quaternion b(n) of the sequence b of quaternions defined by b(0)=1,b(1)=1, b(n) = b(n-1) + b(n-2)*(0,c,c,c) where c = 1/sqrt(3).

Original entry on oeis.org

1, 1, 2, 5, 9, 20, 41, 85, 178, 369, 769, 1600, 3329, 6929, 14418, 30005, 62441, 129940, 270409, 562725, 1171042, 2436961, 5071361, 10553600, 21962241, 45703841, 95110562, 197926885, 411889609, 857150100, 1783745641, 3712008565
Offset: 0

Views

Author

Gerald McGarvey, Apr 25 2005

Keywords

Comments

Prepending 0 and keeping the offset at 0, turns this into a divisibility sequence with g.f. x(1-x^2)/(1-x-2x^2-x^3+x^4). - T. D. Noe, Dec 22 2008
Equals INVERT transform of (1, 1, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Apr 28 2009
Sequence gives the norm of the coefficients in 1/(1 - I*x - I*x^2), where I^2=-1. - Paul D. Hanna, Dec 06 2011
This is the case P1 = 1, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 27 2014

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 20*x^5 + 41*x^6 + 85*x^7 + 178*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := (ChebyshevT[n + 1, (1 + Sqrt[17])/4] - ChebyshevT[n + 1, (1 - Sqrt[17])/4]) 2 / Sqrt[17] // Simplify; (* Michael Somos, Dec 20 2016 *)
  • PARI
    {a(n) = my(A); n = abs(n+1)-1; if( n<2, n>=0, n++; A = vector(n, i, 1); for(i=3, n, A[i] = A[i-1] + A[i-2]*I); norm(A[n]))}; /* Michael Somos, Apr 28 2005 */
    
  • PARI
    {a(n)=norm(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff((1-x^2)/(1-x-2*x^2-x^3+x^4)+x*O(x^n),n)}

Formula

a(n) = A092886(n+1) - A092886(n-1), n > 0.
a(n) = A201837(n)^2 + A201838(n)^2. - Paul D. Hanna, Dec 06 2011
From Peter Bala, Mar 27 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(17))/4 and beta = (1 - sqrt(17))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 1/2].
a(n) = U(n-1,(1 + i)/sqrt(8))*U(n-1,(1 - i)/sqrt(8)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
The o.g.f. is the Chebyshev transform of the rational function x/(1 - x + 4*x^2) = x + x^2 + 5*x^2 + 9*x^4 + 29*x^5 + ... (see A006131), where the Chebyshev transform takes the function A(x) to the function (1 - x^2)/(1 + x^2)*A(x/(1 + x^2)).
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = abs(((sqrt(4*i - 1) + i)^(n+1) - (i - sqrt(4*i - 1))^(n+1)) / 2^(n+1) / sqrt(4*i - 1))^2. - Daniel Suteu, Dec 20 2016
a(n) = a(-2-n) for all n in Z. - Michael Somos, Dec 20 2016
G.f.: (1+x)*(1-x)/(1-x-2*x^2-x^3+x^4). - R. J. Mathar, Apr 26 2024

A201838 G.f.: imaginary part of 1/(1 - i*x - i*x^2) where i=sqrt(-1).

Original entry on oeis.org

0, 1, 1, -1, -3, -2, 4, 9, 3, -15, -25, 0, 52, 65, -27, -169, -155, 158, 520, 321, -681, -1519, -481, 2560, 4200, -79, -8839, -10881, 4797, 28638, 25804, -27351, -87877, -52895, 116775, 256000, 76892, -436655, -705667, 26871, 1502085, 1821118, -850160
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2011

Keywords

Comments

The norm of the coefficients in 1/(1 - i*x - i*x^2) is given by A105309.

Examples

			G.f.: A(x) = x + x^2 - x^3 - 3*x^4 - 2*x^5 + 4*x^6 + 9*x^7 + 3*x^8 - 15*x^9 +...
A201837 gives the real part of coefficients in 1/(1 - i*x - i*x^2) and begins: 1, 0, -1, -2, 0, 4, 5, -2, -13, -12, 12, 40, 25, -52, -117, -38, 196, 324,... in which the pairwise sums generate this sequence.
		

Crossrefs

Cf. A201837 (real), A105309 (norm).

Programs

  • Mathematica
    LinearRecurrence[{0,-1,-2,-1},{0,1,1,-1},50] (* Harvey P. Dale, Apr 23 2024 *)
  • PARI
    {a(n)=imag(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)),n))}
    
  • PARI
    {a(n)=polcoeff(x*(1+x)/(1 + x^2 + 2*x^3 + x^4 +x*O(x^n)), n)}

Formula

G.f.: x*(1+x)/(1 + x^2*(1+x)^2).
a(n) = A201837(n-1) + A201837(n-2), where A201837 gives the real part of the coefficients in 1/(1 - i*x - i*x^2).
a(n) = Im((((i + sqrt(4*i-1))^(n+1) - (i - sqrt(4*i-1))^(n+1)))/(2^(n+1)*sqrt(4*i-1))), where i=sqrt(-1). - Daniel Suteu, Apr 20 2018
Showing 1-2 of 2 results.