cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A203310 a(n) = A203309(n+1)/A203309(n).

Original entry on oeis.org

1, 2, 15, 252, 7560, 356400, 24324300, 2270268000, 277880803200, 43197833952000, 8315583035760000, 1942008468966720000, 540988073497872000000, 177227692877902867200000, 67457290601651778828000000, 29522484828017013792960000000, 14721879100904484211422720000000
Offset: 0

Views

Author

Clark Kimberling, Jan 01 2012

Keywords

Crossrefs

Programs

  • Magma
    F:= Factorial; [(F(n)*F(2*n+2))/(2^n*F(n+2)): n in [0..20]]; // G. C. Greubel, Aug 29 2023
    
  • Maple
    b:= proc(n) option remember; uses LinearAlgebra;
          Determinant(VandermondeMatrix([i*(i+1)/2$i=1..n]))
        end:
    a:= n-> b(n+1)/b(n):
    seq(a(n), n=0..16);  # Alois P. Heinz, Aug 29 2023
  • Mathematica
    (* First program *)
    f[j_]:= j*(j+1)/2; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    Table[v[n], {n,z}]             (* A203309 *)
    Table[v[n+1]/v[n], {n,0,z-1}]  (* A203310 *)
    (* Second program *)
    Table[(n!*(2*n+2)!)/(2^n*(n+2)!), {n,0,20}] (* G. C. Greubel, Aug 29 2023 *)
  • Python
    from operator import mul
    from functools import reduce
    def f(n): return n*(n + 1)//2
    def v(n): return 1 if n==1 else reduce(mul, (f(k) - f(j) for k in range(2, n + 1) for j in range(1, k)))
    print([v(n + 1)//v(n) for n in range(1, 15)]) # Indranil Ghosh, Jul 24 2017
    
  • SageMath
    f=factorial; [(f(n)*f(2*n+2))/(2^n*f(n+2)) for n in range(21)] # G. C. Greubel, Aug 29 2023

Formula

a(n) ~ sqrt(Pi) * 2^(n+3) * n^(2*n + 1/2) / exp(2*n). - Vaclav Kotesovec, Jan 25 2019
a(n) = (n!*(2*n+2)!)/(2^n*(n+2)!). - G. C. Greubel, Aug 29 2023

Extensions

Name corrected by Vaclav Kotesovec, Jan 25 2019
a(0)=1 prepended by Alois P. Heinz, Aug 29 2023

A203467 a(n) = A203309(n)/A000178(n) where A000178 are superfactorials.

Original entry on oeis.org

1, 1, 2, 15, 630, 198450, 589396500, 19912024006875, 8969371213896843750, 61815874928487448987968750, 7358663747680777931818630148437500, 16862758880642741957030086746987589746093750
Offset: 0

Views

Author

Clark Kimberling, Jan 02 2012

Keywords

Crossrefs

Programs

  • Magma
    F:= Factorial; [1] cat [(&*[(F(2*k+2))/(2^k*F(k+2)): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 29 2023
    
  • Mathematica
    (* First program *)
    f[j_]:= j*(j+1)/2; z = 15;
    v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
    d[n_]:= Product[(i-1)!, {i,n}]
    Table[v[n], {n,0,z}]           (* A203309 *)
    Table[v[n+1]/v[n], {n,z}]      (* A203310 *)
    Table[v[n]/d[n], {n,0,12}]     (* A203467 *)
    (* Second program *)
    Table[Product[(2*k+2)!/(2^k*(k+2)!), {k,n-1}], {n,0,20}] (* G. C. Greubel, Aug 29 2023 *)
  • SageMath
    f=factorial; [product((f(2*j+2))/(2^j*f(j+2)) for j in range(n)) for n in range(21)] # G. C. Greubel, Aug 29 2023

Formula

From G. C. Greubel, Aug 29 2023: (Start)
a(n) = (2^(n+3)/Pi)^(n/2)*BarnesG(n+3/2)/(Gamma(n+ 2)*BarnesG(3/2)).
a(n) = (1/2)^binomial(n,2)*BarnesG(n+1)*Product_{k=2..n} binomial(2*k, k+1).
a(n) = Product_{k=1..n-1} (2*k+2)!/(2^k*(k+2)!). (End)
a(n) ~ sqrt(A/Pi) * 2^(n^2/2 + 2*n - 7/24) * n^(n^2/2 - n/2 - 35/24) / exp(3*n^2/4 - n/2 + 1/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 19 2023

Extensions

Name edited by Michel Marcus, May 17 2019
a(0) = 1 prepended by G. C. Greubel, Aug 29 2023

A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.

Original entry on oeis.org

1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2004

Keywords

Comments

From Clark Kimberling, Jan 02 2013: (Start)
Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.
Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).
Guide to related sequences:
...
s(n).............. D(n)....... P(n)
n................. A000178.... (this)
n+1............... A000178.... A203470
n+2............... A000178.... A203472
n^2............... A202768.... A203475
2^(n-1)........... A203303.... A203477
2^n-1............. A203305.... A203479
n!................ A203306.... A203482
n(n+1)/2.......... A203309.... A203511
Fibonacci(n+1).... A203311.... A203518
prime(n).......... A080358.... A203521
odd prime(n)...... A203315.... A203524
nonprime(n)....... A203415.... A203527
composite(n)...... A203418.... A203530
2n-1.............. A108400.... A203516
n+floor(n/2)...... A203430
n+floor[(n+1)/2].. A203433
1/n............... A203421
1/(n+1)........... A203422
1/(2n)............ A203424
1/(2n+2).......... A203426
1/(3n)............ A203428
Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j
...
If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:
...
s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2
n ............... A203012..... A203312..... A203475
n+1 ............. A203581..... A203583..... A203585
2n-1 ............ A203514..... A203587..... A203589
n^2 ............. A203673..... A203675..... A203677
2^(n-1) ......... A203679..... A203681..... A203683
n! .............. A203685..... A203687..... A203689
n(n+1)/2 ........ A203691..... A203693..... A203695
Fibonacci(n) .... A203742..... A203744..... A203746
Fibonacci(n+1) .. A203697..... A203699..... A203701
prime(n) ........ A203703..... A203705..... A203707
floor(n/2) ...... A203748..... A203752..... A203773
floor((n+1)/2) .. A203759..... A203763..... A203766
For f(x,y)=x^4+y^4, see A203755 and A203770. (End)

Examples

			a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.
		

References

  • Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.
  • Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):
    seq(a(n), n=1..12);  # Alois P. Heinz, Jul 23 2017
  • Mathematica
    f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* Robert G. Wilson v, Jan 08 2013 *)
  • PARI
    A093883(n)=prod(i=1,n,(2*i-1)!/i!)  \\ M. F. Hasler, Nov 02 2012

Formula

Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - Vladeta Jovovic, May 27 2004
G.f.: G(0)/(2*x) -1/x, where G(k)= 1 + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 26 2019

Extensions

More terms from Vladeta Jovovic, May 27 2004
Showing 1-3 of 3 results.