A203423
a(n) = w(n+1)/(2*w(n)), where w=A203422.
Original entry on oeis.org
-3, 24, -250, 3240, -50421, 917504, -19131876, 450000000, -11789738455, 340545503232, -10752962364222, 368510430439424, -13623365478515625, 540431955284459520, -22899384412078526344, 1032236014321051140096, -49323481720063219673451, 2490368000000000000000000, -132484966403310261255807810
Offset: 1
-
[(-1)^n*(n+1)*(n+2)^n/2: n in [1..20]]; // G. C. Greubel, Dec 07 2023
-
(* First program *)
f[j_] := 1/(j + 1); z = 16;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
1/Table[v[n], {n, 1, z}] (* A203422 *)
Table[v[n]/(2 v[n + 1]), {n, 1, z}] (* this sequence *)
(* Second program *)
Table[(-1)^n*(n+1)*(n+2)^n/2, {n,20}] (* G. C. Greubel, Dec 07 2023 *)
-
[(-1)^n*(n+1)*(n+2)^n/2 for n in range(1,21)] # G. C. Greubel, Dec 07 2023
A093883
Product of all possible sums of two distinct numbers taken from among first n natural numbers.
Original entry on oeis.org
1, 3, 60, 12600, 38102400, 2112397056000, 2609908810629120000, 84645606509847871488000000, 82967862872337478796810649600000000, 2781259372192376861719959017613164544000000000
Offset: 1
A203421
Reciprocal of Vandermonde determinant of (1,1/2,...,1/n).
Original entry on oeis.org
1, 1, -2, -18, 1152, 720000, -5598720000, -658683809280000, 1381360067999170560000, 59463021447701323327733760000, -59463021447701323327733760000000000000, -1542317635347398938581016812202229760000000000000
Offset: 0
-
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203421:= func< n | (-1)^Binomial(n,2)*(Factorial(n))^n/BarnesG(n+2) >;
[A203421(n): n in [1..20]]; // G. C. Greubel, Dec 07 2023
-
(* First program *)
f[j_] := 1/j; z = 12;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}]
1/% (* A203421 *)
Table[v[n]/v[n + 1], {n, 1, z}] (* A000169 signed *)
(* Additional programs *)
Table[(-1)^Floor[n/2]*Product[(k + 1)^k, {k, 0, n-1}], {n, 1, 10}] (* Vaclav Kotesovec, Oct 18 2015 *)
Table[(-1)^Binomial[n,2]*(n!)^n/BarnesG[n+2], {n, 20}] (* G. C. Greubel, Dec 07 2023 *)
-
a(n) = prod(i=2,n, (-i)^(i-1)); \\ Kevin Ryde, Apr 17 2022
-
def BarnesG(n): return product(factorial(k) for k in range(n-1))
def A203421(n): return (-1)^binomial(n, 2)*(gamma(n+1))^n/BarnesG(n+2)
[A203421(n) for n in range(1, 21)] # G. C. Greubel, Dec 07 2023
Showing 1-3 of 3 results.
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions