cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203551 a(n) = n*(5n^2 + 3n + 4) / 6.

Original entry on oeis.org

0, 2, 10, 29, 64, 120, 202, 315, 464, 654, 890, 1177, 1520, 1924, 2394, 2935, 3552, 4250, 5034, 5909, 6880, 7952, 9130, 10419, 11824, 13350, 15002, 16785, 18704, 20764, 22970, 25327, 27840, 30514, 33354, 36365, 39552, 42920, 46474, 50219
Offset: 0

Views

Author

Michael Somos, Jan 02 2012

Keywords

Examples

			G.f. = 2*x + 10*x^2 + 29*x^3 + 64*x^4 + 120*x^5 + 202*x^6 + 315*x^7 + 464*x^8 + ...
		

Crossrefs

Cf. A203552.

Programs

  • Magma
    I:=[0, 2, 10, 29]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 07 2012
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,2,10,29},40] (* Vincenzo Librandi, Jan 07 2012 *)
    Table[n (5n^2+3n+4)/6,{n,0,40}] (* Harvey P. Dale, Mar 24 2022 *)
  • PARI
    {a(n) = n * (5*n^2 + 3*n + 4) / 6};
    

Formula

a(n) = Sum_{k = 1..n} A(-k, k-n-1) where A(i, j) = i^2 + i*j + j^2 + i + j + 1.
G.f.: x * (2 + 2*x + x^2) / (1 - x)^4.
a(n) = -A203552(-n) for all n in Z.
a(n)-a(n-1) = A192136(n). - Bruno Berselli, Jan 03 2012
E.g.f.: x*(5*x^2 + 18*x + 12)*exp(x)/6. - G. C. Greubel, Aug 12 2018