cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203852 Expansion of e.g.f. exp( Integral -log(1-x) dx ).

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 79, 421, 2673, 19216, 156021, 1411873, 14117773, 154730720, 1845959179, 23826445501, 330951133537, 4923574598112, 78123812086441, 1317174439409409, 23517962293307701, 443340968936640496, 8799729204814165223, 183448995762912568885
Offset: 0

Views

Author

Paul D. Hanna, Jan 29 2012

Keywords

Comments

Row sums of A185164. - Peter Bala, Mar 14 2012

Examples

			E.g.f.: A(x) = 1 + x^2/2! + x^3/3! + 5*x^4/4! + 16*x^5/5! + 79*x^6/6! +...
where: log(A(x)) = x^2/2 + x^3/6 + x^4/12 + x^5/20 + x^6/30 + x^7/42 +...
		

Crossrefs

Cf. A185164.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)*(1-x)^(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 17 2018
  • Mathematica
    CoefficientList[Series[Exp[x]*(1-x)^(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(n-1,i)*(i-1)!*a(n-i-1),i,1,n-1); /* Vladimir Kruchinin, Feb 23 2015 */
    
  • PARI
    {a(n)=n!*polcoeff(exp(-intformal(log(1-x +x*O(x^n)))), n)}
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x)*(1-x)^(1-x))) \\ G. C. Greubel, Jul 17 2018
    

Formula

E.g.f.: exp( Sum_{n>=2} x^n/(n*(n-1)) ).
E.g.f.: exp(x)*(1-x)^(1-x). - Vaclav Kotesovec, Dec 27 2013
a(n) ~ (n-1)! * (exp(1)/n + (2*log(n)+2*gamma)/n^2), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Dec 27 2013
a(n) = sum(i=1..n-1, binomial(n-1,i)*(i-1)!*a(n-i-1),i,1,n-1), a(0)=1. - Vladimir Kruchinin, Feb 23 2015