A203847
a(n) = tau(n)*Fibonacci(n), where tau(n) = A000005(n), the number of divisors of n.
Original entry on oeis.org
1, 2, 4, 9, 10, 32, 26, 84, 102, 220, 178, 864, 466, 1508, 2440, 4935, 3194, 15504, 8362, 40590, 43784, 70844, 57314, 370944, 225075, 485572, 785672, 1906866, 1028458, 6656320, 2692538, 13069854, 14098312, 22811548, 36909860, 134373168, 48315634, 156352676, 252983944
Offset: 1
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 9*x^4 + 10*x^5 + 32*x^6 + 26*x^7 +...
where A(x) = x/(1-x-x^2) + x^2/(1-3*x^2+x^4) + 2*x^3/(1-4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) + 5*x^5/(1-11*x^5-x^10) + 8*x^6/(1-18*x^6+x^12) +...+ Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
-
Table[DivisorSigma[0, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
-
{a(n)=sigma(n,0)*fibonacci(n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
-
a(n) = numdiv(n)*fibonacci(n); \\ Michel Marcus, Jul 18 2018
A203850
G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-x^2)^n) / (1 + Lucas(n)*x^n + (-x^2)^n) where Lucas(n) = A000204(n).
Original entry on oeis.org
1, -2, -4, 0, 14, 16, 0, 0, 4, -152, -188, 0, 0, -44, 0, 0, 4414, 5456, -4, 0, 1288, 0, 0, 0, 0, -335406, -414728, 0, 0, -97904, 0, 0, 4, 0, -8828, 0, 66770564, 82532956, 0, 0, 19483388, -304, 0, 0, 0, 1756816, 0, 0, 0, -34787592002, -42999828492, 0, 60508, -10150882544, 0, 0, 0, 0, -915304508, 0, 0, 796
Offset: 0
G.f.: A(x) = 1 - 2*x - 4*x^2 + 14*x^4 + 16*x^5 + 4*x^8 - 152*x^9 - 188*x^10 +...
-log(A(x)) = 2*x + 4*3*x^2/2 + 8*4*x^3/3 + 8*7*x^4/4 + 12*11*x^5/5 + 16*18*x^6/6 +...+ (sigma(2*n)-sigma(n))*Lucas(n)*x^n/n +...
Compare to the logarithm of Jacobi theta4 H(x) = 1 + 2*Sum_{n>=1} (-1)^n*x^(n^2):
-log(H(x)) = 2*x + 4*x^2/2 + 8*x^3/3 + 8*x^4/4 + 12*x^5/5 + 16*x^6/6 + 16*x^7/7 +...+ (sigma(2*n)-sigma(n))*x^n/n +...
The g.f. equals the product:
A(x) = (1-x-x^2)/(1+x-x^2) * (1-3*x^2+x^4)/(1+3*x^2+x^4) * (1-4*x^3-x^6)/(1+4*x^3-x^6) * (1-7*x^4+x^8)/(1+7*x^4+x^8) * (1-11*x^5-x^10)/(1+11*x^5-x^10) *...* (1 - Lucas(n)*x^n + (-x^2)^n)/(1 + Lucas(n)*x^n + (-x^2)^n) *...
Positions of zeros form A022544:
[3,6,7,11,12,14,15,19,21,22,23,24,27,28,30,31,33,35,38,39,42,43,44,...]
which are numbers that are not the sum of 2 squares.
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))/prod(m=1, n, 1 + Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n))), n)}
-
{a(n)=polcoeff(exp(sum(k=1, n,-(sigma(2*k)-sigma(k))*Lucas(k)*x^k/k)+x*O(x^n)), n)}
A203861
G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 where Lucas(n) = A000204(n).
Original entry on oeis.org
1, -3, -9, 20, 45, 0, -151, -231, 0, 140, 1107, 2052, 49, -1305, 0, -15004, -28260, 0, 17710, 0, 81, 324040, 589953, 0, -375570, -1089, 0, -124124, -10659705, -19764180, -121, 12605358, 0, 0, 4158315, 0, 567552368, 1052295189, -780030, -669901660, 0, 0, -221399431, -85965, 0
Offset: 0
G.f.: A(x) = 1 - 3*x - 9*x^2 + 20*x^3 + 45*x^4 - 151*x^6 - 231*x^7 +...
-log(A(x))/3 = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 +...+ sigma(n)*A000204(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-x-x^2)^3 * (1-3*x^2+x^4)^3 * (1-4*x^3-x^6)^3 * (1-7*x^4+x^8)^3 * (1-11*x^5-x^10)^3 * (1-18*x^6+x^12)^3 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 *...
Positions of zeros form A020757:
[5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...]
which are numbers that are not the sum of two triangular numbers.
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}
A204382
G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) where A002203(n) is the companion Pell numbers.
Original entry on oeis.org
1, -2, -7, -2, 1, 82, 34, 464, 198, -82, -1, 0, -39208, -16238, 6725, -551614, -228486, 95120, 0, 82, 6726, 0, 263673800, 109216786, -45239073, 0, 8957108166, 3706940654, -1536796802, -551614, -1, -109216786, 0, -18738638, -6726, -24954506565518, -10336495061766
Offset: 0
G.f.: A(x) = 1 - 2*x - 7*x^2 - 2*x^3 + x^4 + 82*x^5 + 34*x^6 + 464*x^7 +...
-log(A(x)) = 1*2*x + 3*6*x^2/2 + 4*14*x^3/3 + 7*34*x^4/4 + 6*82*x^5/5 + 12*198*x^6/6 +...+ sigma(n)*A002203(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-2*x-x^2) * (1-6*x^2+x^4) * (1-14*x^3-x^6) * (1-34*x^4+x^8) * (1-82*x^5-x^10) * (1-198*x^6+x^12) *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n)) *...
Positions of zeros form A093519:
[11,18,21,25,32,39,43,46,49,54,60,65,67,68,74,76,81,87,88,90,...].
which are numbers that are not the sum of two generalized pentagonal numbers.
-
/* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
{a(n)=polcoeff(exp(sum(k=1, n, -sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
A203801
G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 1, 2, 7, 9, 27, 53, 109, 206, 463, 907, 1756, 3591, 6849, 13706, 27132, 51477, 99168, 195160, 366269, 707173, 1355524, 2558372, 4836092, 9186600, 17245564, 32428375, 61057276, 113946770, 212495896, 397836811, 737325660, 1368659832, 2544085015, 4694930535
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 9*x^4 + 27*x^5 + 53*x^6 +...
where A(x) = (1+x-x^2) * (1+3*x^2+x^4) * (1+4*x^3-x^6) * (1+7*x^4+x^8) * (1+11*x^5-x^10) * (1+18*x^6+x^12) *...* (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) *...
and 1/A(x) = (1-x-x^2) * (1-4*x^3-x^6) * (1-11*x^5-x^10) * (1-29*x^7-x^14) * (1-76*x^9-x^18) * (1-199*x^11-x^22) *...* (1 - Lucas(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *...
Also, the logarithm of the g.f. equals the series:
log(A(x)) = x + 1*3*x^2/2 + 4*4*x^3/3 + 1*7*x^4/4 + 6*11*x^5/5 + 4*18*x^6/6 + 8*29*x^7/7 + 1*47*x^8/8 +...+ A000593(n)*Lucas(n)*x^n/n +...
-
max = 40; s = Product[1 + LucasL[n]*x^n + (-1)^n*x^(2*n), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 14 2015 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(prod(k=1,n,1+Lucas(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)),n)}
-
{a(n)=polcoeff(1/prod(k=1,n,1-Lucas(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)),n)}
-
/* Exponential form using sum of odd divisors of n: */
{A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))}
{a(n)=polcoeff(exp(sum(k=1, n, A000593(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}
Showing 1-5 of 5 results.
Comments