A203847
a(n) = tau(n)*Fibonacci(n), where tau(n) = A000005(n), the number of divisors of n.
Original entry on oeis.org
1, 2, 4, 9, 10, 32, 26, 84, 102, 220, 178, 864, 466, 1508, 2440, 4935, 3194, 15504, 8362, 40590, 43784, 70844, 57314, 370944, 225075, 485572, 785672, 1906866, 1028458, 6656320, 2692538, 13069854, 14098312, 22811548, 36909860, 134373168, 48315634, 156352676, 252983944
Offset: 1
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 9*x^4 + 10*x^5 + 32*x^6 + 26*x^7 +...
where A(x) = x/(1-x-x^2) + x^2/(1-3*x^2+x^4) + 2*x^3/(1-4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) + 5*x^5/(1-11*x^5-x^10) + 8*x^6/(1-18*x^6+x^12) +...+ Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
-
Table[DivisorSigma[0, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
-
{a(n)=sigma(n,0)*fibonacci(n)}
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
-
a(n) = numdiv(n)*fibonacci(n); \\ Michel Marcus, Jul 18 2018
A203860
G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
Original entry on oeis.org
1, -1, -4, -1, 1, 11, 7, 25, 18, -11, -1, 0, -325, -199, 122, -1364, -843, 550, 0, 11, 123, 0, 39650, 24476, -15126, 0, 271443, 164194, -103682, -1364, -1, -24476, 0, -9349, -123, -20633239, -12752043, 7881225, -843, 0, -226965629, -141422125, 88114450, 0, 1
Offset: 0
G.f.: A(x) = 1 - x - 4*x^2 - x^3 + x^4 + 11*x^5 + 7*x^6 + 25*x^7 +...
-log(A(x)) = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 +...+ sigma(n)*A000204(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10) * (1-18*x^6+x^12) *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) *...
Positions of zeros form A093519:
[11,18,21,25,32,39,43,46,49,54,60,65,67,68,74,76,81,87,88,90,...]
which are numbers that are not the sum of two generalized pentagonal numbers.
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, -sigma(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
A203861
G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 where Lucas(n) = A000204(n).
Original entry on oeis.org
1, -3, -9, 20, 45, 0, -151, -231, 0, 140, 1107, 2052, 49, -1305, 0, -15004, -28260, 0, 17710, 0, 81, 324040, 589953, 0, -375570, -1089, 0, -124124, -10659705, -19764180, -121, 12605358, 0, 0, 4158315, 0, 567552368, 1052295189, -780030, -669901660, 0, 0, -221399431, -85965, 0
Offset: 0
G.f.: A(x) = 1 - 3*x - 9*x^2 + 20*x^3 + 45*x^4 - 151*x^6 - 231*x^7 +...
-log(A(x))/3 = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 +...+ sigma(n)*A000204(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-x-x^2)^3 * (1-3*x^2+x^4)^3 * (1-4*x^3-x^6)^3 * (1-7*x^4+x^8)^3 * (1-11*x^5-x^10)^3 * (1-18*x^6+x^12)^3 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 *...
Positions of zeros form A020757:
[5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...]
which are numbers that are not the sum of two triangular numbers.
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}
A204384
G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-x^2)^n) / (1 + A002203(n)*x^n + (-x^2)^n) where A002203(n) is the companion Pell numbers.
Original entry on oeis.org
1, -4, -4, 0, 68, 56, 0, 0, 4, -5572, -4616, 0, 0, -328, 0, 0, 2663428, 2206456, -4, 0, 156808, 0, 0, 0, 0, -7420309452, -6147187208, 0, 0, -436867144, 0, 0, 4, 0, -5326856, 0, 120491016385604, 99818026262072, 0, 0, 7093848711176, -11144, 0, 0, 0, 86497488056, 0, 0, 0
Offset: 0
G.f.: A(x) = 1 - 4*x - 4*x^2 + 68*x^4 + 56*x^5 + 4*x^8 - 5572*x^9 - 4616*x^10 +...
-log(A(x)) = 2*2*x + 4*6*x^2/2 + 8*14*x^3/3 + 8*34*x^4/4 + 12*82*x^5/5 + 16*198*x^6/6 +...+ (sigma(2*n)-sigma(n))*A002203(n)*x^n/n +...
Compare to the logarithm of Jacobi theta4 H(x) = 1 + 2*Sum_{n>=1} (-1)^n*q^(n^2):
-log(H(x)) = 2*x + 4*x^2/2 + 8*x^3/3 + 8*x^4/4 + 12*x^5/5 + 16*x^6/6 + 16*x^7/7 +...+ (sigma(2*n)-sigma(n))*x^n/n +...
The g.f. equals the products:
A(x) = (1-2*x-x^2)/(1+2*x-x^2) * (1-6*x^2+x^4)/(1+6*x^2+x^4) * (1-14*x^3-x^6)/(1+14*x^3-x^6) * (1-34*x^4+x^8)/(1+34*x^4+x^8) * (1-82*x^5-x^10)/(1+82*x^5-x^10) *...* (1 - A002203(n)*x^n + (-x^2)^n)/(1 + A002203(n)*x^n + (-x^2)^n) *...
A(x) = (1-2*x-x^2)^2 * (1-6*x^2+x^4) * (1-14*x^3-x^6)^2 * (1-34*x^4+x^8) * (1-82*x^5-x^10)^2 *(1-198*x^6+x^12) * (1-478*x^7-x^14)^2 * (1-1154*x^8+x^16) *...
Positions of zeros form A022544:
[3,6,7,11,12,14,15,19,21,22,23,24,27,28,30,31,33,35,38,39,42,43,44,...]
which are numbers that are not the sum of 2 squares.
-
/* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))/prod(m=1, n, 1 + A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
-
{a(n)=polcoeff(prod(m=1, n\2+1, (1 - A002203(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - A002203(2*m)*x^(2*m) + x^(4*m) +x*O(x^n))), n)}
-
{a(n)=polcoeff(exp(sum(k=1, n,-(sigma(2*k)-sigma(k))*A002203(k)*x^k/k)+x*O(x^n)), n)}
A203801
G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
Original entry on oeis.org
1, 1, 2, 7, 9, 27, 53, 109, 206, 463, 907, 1756, 3591, 6849, 13706, 27132, 51477, 99168, 195160, 366269, 707173, 1355524, 2558372, 4836092, 9186600, 17245564, 32428375, 61057276, 113946770, 212495896, 397836811, 737325660, 1368659832, 2544085015, 4694930535
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 9*x^4 + 27*x^5 + 53*x^6 +...
where A(x) = (1+x-x^2) * (1+3*x^2+x^4) * (1+4*x^3-x^6) * (1+7*x^4+x^8) * (1+11*x^5-x^10) * (1+18*x^6+x^12) *...* (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) *...
and 1/A(x) = (1-x-x^2) * (1-4*x^3-x^6) * (1-11*x^5-x^10) * (1-29*x^7-x^14) * (1-76*x^9-x^18) * (1-199*x^11-x^22) *...* (1 - Lucas(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *...
Also, the logarithm of the g.f. equals the series:
log(A(x)) = x + 1*3*x^2/2 + 4*4*x^3/3 + 1*7*x^4/4 + 6*11*x^5/5 + 4*18*x^6/6 + 8*29*x^7/7 + 1*47*x^8/8 +...+ A000593(n)*Lucas(n)*x^n/n +...
-
max = 40; s = Product[1 + LucasL[n]*x^n + (-1)^n*x^(2*n), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 14 2015 *)
-
/* Subroutine used in PARI programs below: */
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
-
{a(n)=polcoeff(prod(k=1,n,1+Lucas(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)),n)}
-
{a(n)=polcoeff(1/prod(k=1,n,1-Lucas(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)),n)}
-
/* Exponential form using sum of odd divisors of n: */
{A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))}
{a(n)=polcoeff(exp(sum(k=1, n, A000593(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}
A225524
G.f.: exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*Lucas(n)*x^n/n ), where Lucas(n) = A000204(n) and sigma(n) = A000203(n) is the sum of divisors of n.
Original entry on oeis.org
1, 2, 8, 24, 66, 184, 488, 1248, 3136, 7776, 18780, 44880, 105896, 246124, 567008, 1293840, 2920626, 6545352, 14555388, 32115120, 70421792, 153451488, 332314512, 715843200, 1534016392, 3270661294, 6941489040, 14667591672, 30859685088, 64670865304, 135011595856, 280813639680
Offset: 0
G.f.: A(x) = 1 + 2*x + 8*x^2 + 24*x^3 + 66*x^4 + 184*x^5 + 488*x^6 + 1248*x^7 +...
The g.f. equals the product:
A(x) = (1+x-x^2)/(1-x-x^2) * (1+3*x^2+x^4)/(1-3*x^2+x^4) * (1+4*x^3-x^6)/(1-4*x^3-x^6) * (1+7*x^4+x^8)/(1-7*x^4+x^8) * (1+11*x^5-x^10)/(1-11*x^5-x^10) *...* (1 + Lucas(n)*x^n + (-x^2)^n)/(1 - Lucas(n)*x^n + (-x^2)^n) *...
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(prod(m=1, n, 1 + Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))/prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(1/prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n))), n)}
for(n=0,30,print1(a(n),", "))
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(exp(sum(k=1, n, (sigma(2*k)-sigma(k))*Lucas(k)*x^k/k)+x*O(x^n)), n)}
for(n=0,30,print1(a(n),", "))
A225525
a(n) = (sigma(2*n) - sigma(n))*Lucas(n) where Lucas(n) = A000204(n) and sigma(n) = A000203(n) is the sum of divisors of n.
Original entry on oeis.org
2, 12, 32, 56, 132, 288, 464, 752, 1976, 2952, 4776, 10304, 14588, 26976, 65472, 70624, 128556, 300456, 373960, 726096, 1566464, 1900944, 3075792, 6635648, 10401182, 15200808, 35136320, 45481408, 68991060, 178607808, 192662336, 311734208, 756594816, 918147096, 1980790944, 3472069328
Offset: 1
L.g.f.: L(x) = 2*x + 4*3*x^2/2 + 8*4*x^3/3 + 8*7*x^4/4 + 12*11*x^5/5 + 16*18*x^6/6 +...
where
exp(-L(x)) = 1 - 2*x - 4*x^2 + 14*x^4 + 16*x^5 + 4*x^8 - 152*x^9 - 188*x^10 +...+ A203850(n)*x^n +...
Also,
exp(L(x)) = 1 + 2*x + 8*x^2 + 24*x^3 + 66*x^4 + 184*x^5 + 488*x^6 + 1248*x^7 +...+ A225524(n)*x^n +...
Exponentiation yields the product:
exp(L(x)) = (1+x-x^2)/(1-x-x^2) * (1+3*x^2+x^4)/(1-3*x^2+x^4) * (1+4*x^3-x^6)/(1-4*x^3-x^6) * (1+7*x^4+x^8)/(1-7*x^4+x^8) * (1+11*x^5-x^10)/(1-11*x^5-x^10) *...* (1 + Lucas(n)*x^n + (-x^2)^n)/(1 - Lucas(n)*x^n + (-x^2)^n) *...
-
Table[(DivisorSigma[1,2n]-DivisorSigma[1,n])LucasL[n],{n,40}] (* Harvey P. Dale, Sep 10 2016 *)
-
{a(n)=(sigma(2*n) - sigma(n))*(fibonacci(n-1)+fibonacci(n+1))}
for(n=1,40,print1(a(n),", "))
-
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=n*polcoeff(-log(prod(m=1, n\2+1, (1 - Lucas(2*m-1)*x^(2*m-1) - x^(4*m-2))^2*(1 - Lucas(2*m)*x^(2*m) + x^(4*m) +x*O(x^n)))), n)}
for(n=1,40,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments