cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204557 Right edge of the triangle A045975.

Original entry on oeis.org

1, 4, 21, 36, 85, 120, 217, 280, 441, 540, 781, 924, 1261, 1456, 1905, 2160, 2737, 3060, 3781, 4180, 5061, 5544, 6601, 7176, 8425, 9100, 10557, 11340, 13021, 13920, 15841, 16864, 19041, 20196, 22645, 23940, 26677, 28120, 31161, 32760, 36121, 37884, 41581
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Programs

  • Haskell
    a204557 = last . a045975_row
    
  • Magma
    [n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4: n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    Table[n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4, {n, 1, 50}] (* G. C. Greubel, Jun 15 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,4,21,36,85,120,217},50] (* Harvey P. Dale, Feb 20 2021 *)
  • PARI
    Vec(-x*(-1-3*x-14*x^2-6*x^3-x^4+x^5)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 28 2016
    

Formula

a(n) = A045975(n,n);
a(n) = A079326(n+1) * n;
a(n) = A204556(n) + A045895(n).
G.f.: -x*(-1-3*x-14*x^2-6*x^3-x^4+x^5) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Aug 13 2012
From Colin Barker, Jan 28 2016: (Start)
a(n) = n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4.
a(n) = (n^3+n^2-2*n)/2 for n even.
a(n) = (n^3+2*n^2-n)/2 for n odd.
(End)