cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206012 Modular recursion: a(0)=a(1)=a(2)=a(3)=1, thereafter: a(n) equals a(n - 2) + a(n - 3) when n = 0 mod 5, a(n - 1) + a(n - 3) when n = 1 mod 5, a(n - 1) + a(n - 2) when n = 2 mod 5, a(n - 1) + a(n - 4) when n = 3 mod 5, and a(n - 1) + a(n - 2) + a(n - 3) otherwise.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 3, 5, 8, 16, 13, 21, 34, 50, 105, 84, 134, 218, 323, 675, 541, 864, 1405, 2080, 4349, 3485, 5565, 9050, 13399, 28014, 22449, 35848, 58297, 86311, 180456, 144608, 230919, 375527, 555983, 1162429, 931510, 1487493, 2419003, 3581432, 7487928
Offset: 0

Views

Author

Roger L. Bagula, Mar 19 2012

Keywords

Comments

This sequence was inspired by the work of Paul Curtz on three part sequences. I did a three part version of this that gave a generating polynomial and got even more variance by adding two more modulo sequences.

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^15-x^13+x^12-2*x^10-2*x^9+2*x^8-x^7-3*x^6-4*x^5+3*x^4+x^3+x^2+x+1)/(x^15-3*x^10-6*x^5+1))); // Bruno Berselli, Mar 20 2012
  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 1; a[3] = 1;a[n_Integer] := a[n]=If[Mod[n, 5] == 0, a[n - 2] + a[n - 3], If[Mod[n, 5] == 1, a[n - 1] + a[n - 3], If[Mod[n, 5] == 2, a[n - 1] + a[n - 2], If[Mod[n, 5] == 3, a[n - 1] + a[n - 4], a[n - 1] + a[n - 2] + a[n - 3]]]]];b = Table[a[n], {n, 0, 50}];(* FindSequenceFunction gives*);Table[c[n] = b[[n]], {n, 1, 16}];c[n_Integer] := c[n] = -c[-15 + n] + c[-10 + n] + 6 c[-5 + n];d = Table[c[n], {n, 1, Length[b]}]
    CoefficientList[Series[(x^15-x^13+x^12-2*x^10-2*x^9+2*x^8-x^7-3*x^6-4*x^5+3*x^4+x^3+x^2+x+1)/(x^15-3*x^10-6*x^5+1),{x,0,1001}],x] (* Vincenzo Librandi, Apr 01 2012 *)
  • PARI
    Vec((x^15-x^13+x^12-2*x^10-2*x^9+2*x^8-x^7-3*x^6-4*x^5+3*x^4+x^3+x^2+x+1)/(x^15-3*x^10-6*x^5+1)+O(x^99)) \\ Charles R Greathouse IV, Mar 19 2012
    

Formula

G.f.: (x^15 - x^13 + x^12 - 2x^10 - 2x^9 + 2x^8 - x^7 - 3x^6 - 4x^5 + 3x^4 + x^3 + x^2 + x + 1) / (x^15 - 3x^10 - 6x^5 + 1). - Alois P. Heinz, Mar 19 2012