cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A206228 a(n) = [x^n] Product_{k=1..n} 1/(1 - x^k)^(n-k+1).

Original entry on oeis.org

1, 1, 4, 17, 80, 384, 1887, 9385, 47139, 238488, 1213588, 6204547, 31844710, 163978344, 846741721, 4382945317, 22735196277, 118151632006, 615032941924, 3206257881171, 16736910271178, 87472908459696, 457662760258109, 2396899780970552, 12564645719730297
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Number of partitions of n with 1 kind of n's, 2 kinds of (n-1)'s, ..., n kinds of 1's, see example. [Joerg Arndt, May 17 2013]

Examples

			Let [x^n] F(x) denote the coefficient of x^n in F(x); then
a(0) = 1;
a(1) = [x] 1/(1-x) = 1;
a(2) = [x^2] 1/((1-x)^2*(1-x^2)) = 4;
a(3) = [x^3] 1/((1-x)^3*(1-x^2)^2*(1-x^3)) = 17;
a(4) = [x^4] 1/((1-x)^4*(1-x^2)^3*(1-x^3)^2*(1-x^4)) = 80; ...
as illustrated below.
The coefficients in Product_{k=1..n} 1/(1-x^k)^(n-k+1) for n=0..9 begin:
n=0: [(1), 0, 0, 0, 0, 0, 0, ...];
n=1: [1,(1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...];
n=2: [1, 2,(4), 6, 9, 12, 16, 20, 25, 30, 36, 42, ...]; (A002620)
n=3: [1, 3, 8, (17), 33, 58, 97, 153, 233, 342, 489, 681, ...]; (A002625)
n=4: [1, 4, 13, 34, (80), 170, 339, 636, 1141, 1964, 3270, ...];
n=5: [1, 5, 19, 58, 157,(384), 874, 1869, 3803, 7408, 13907, ...];
n=6: [1, 6, 26, 90, 273, 746, (1887), 4474, 10062, 21620, ...];
n=7: [1, 7, 34, 131, 438, 1314, 3632, (9385), 22940, 53466, ...];
n=8: [1, 8, 43, 182, 663, 2158, 6445, 17944, (47139), 117842, ...];
n=9: [1, 9, 53, 244, 960, 3361, 10757, 32008, 89651, (238488), ...]; ...
where the coefficients in parenthesis start this sequence.
Incidentally, the antidiagonal sums in the above table form A206119.
From _Joerg Arndt_, May 17 2013: (Start)
There are a(3)=17 partitions of 3 into 1 kind of 3's, 2 kinds of 2's, and 3 kinds of 1's:
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:0  1:2  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:0  1:1  1:2  ]
06:  [ 1:0  1:2  1:2  ]
07:  [ 1:0  2:0  ]
08:  [ 1:0  2:1  ]
09:  [ 1:1  1:1  1:1  ]
10:  [ 1:1  1:1  1:2  ]
11:  [ 1:1  1:2  1:2  ]
12:  [ 1:1  2:0  ]
13:  [ 1:1  2:1  ]
14:  [ 1:2  1:2  1:2  ]
15:  [ 1:2  2:0  ]
16:  [ 1:2  2:1  ]
17:  [ 3:0  ]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n-k+1), {k, 1, n}], {x, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Aug 21 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^n))^(n-k+1)),n)}
    for(n=0,41,print1(a(n),", "))

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724158141653278798514832712869470973196907560641... and c = 0.2030089852709942695768237484498370155967795685257713505678384193773498... - Vaclav Kotesovec, Aug 21 2018

A347968 Decimal expansion of the solution to Product_{k>=1} (1 - x^k) = x.

Original entry on oeis.org

4, 1, 9, 6, 0, 0, 3, 5, 2, 5, 9, 8, 3, 5, 6, 4, 7, 8, 4, 9, 8, 7, 7, 5, 7, 5, 3, 5, 6, 6, 7, 0, 0, 0, 2, 5, 3, 1, 8, 0, 8, 9, 3, 6, 3, 1, 2, 0, 0, 1, 6, 0, 7, 8, 0, 4, 4, 1, 6, 8, 1, 3, 6, 1, 6, 7, 7, 6, 0, 7, 8, 4, 9, 3, 2, 0, 5, 9, 8, 0, 7, 8, 0, 9, 3, 8, 8, 9, 8, 3, 0, 2, 7, 7, 7, 1, 5, 4, 9, 9, 8, 7, 5, 1, 1, 7, 1, 7, 8, 3, 8, 6, 0, 7, 5, 4, 3, 7, 5, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 21 2021

Keywords

Comments

Fixed point of Euler function. - Michal Paulovic, Oct 16 2022

Examples

			0.41960035259835647849877575356670002531808936312...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[QPochhammer[x] == x, {x, 1/2}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Sep 21 2021 *)
  • PARI
    solve(x=0, 1, prodinf(k=1,1-x^k) - x) \\ Michel Marcus, Sep 21 2021
    
  • PARI
    solve(x=0.4, 0.5, eta(log(x)/(2*Pi*I)) - x) \\ Michal Paulovic, Oct 16 2022

A206139 G.f.: A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1-x^k)^(n-k+1).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 224, 356, 563, 890, 1401, 2202, 3448, 5386, 8386, 13025, 20175, 31180, 48077, 73976, 113588, 174057, 266174, 406224, 618729, 940552, 1427038, 2161122, 3266956, 4930052, 7427314, 11171332, 16776169, 25154204
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 +...
where
A(x) = 1 + x/(1-x) + x^3/((1-x)^2*(1-x^2)) + x^6/((1-x)^3*(1-x^2)^2*(1-x^3)) + x^10/((1-x)^4*(1-x^2)^3*(1-x^3)^2*(1-x^4)) +...
		

Crossrefs

Cf. A206119.

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^(m*(m+1)/2)/prod(k=1,m,(1-x^k +x*O(x^n))^(m-k+1))),n)}
    for(n=0,61,print1(a(n),", "))
Showing 1-3 of 3 results.