cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A192869 Thin primes: odd primes p such that p+1 is a prime (or 1) times a power of two.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 23, 31, 37, 43, 47, 61, 67, 73, 79, 103, 127, 151, 157, 163, 191, 193, 211, 223, 271, 277, 283, 313, 331, 367, 383, 397, 421, 457, 463, 487, 523, 541, 547, 607, 613, 631, 661, 673, 691, 733, 751, 757, 787, 823, 877, 907, 991, 997, 1051
Offset: 1

Views

Author

Keywords

Comments

Broughan & Qizhi conjecture that a(n) << n (log n)^2, matching the lower bound they proved.
Sequence A206581 excludes the Mersenne primes (A000043), which are included here under the "or 1" case. - T. D. Noe, Mar 07 2012

References

  • D. R. Heath-Brown, "Artin's conjecture for primitive roots", Quarterly Journal of Mathematics 37:1 (1986) pp. 27-38.
  • N. M. Timofeev, "The Hardy-Ramanujan and Halasz inequalities for shifted primes", Mathematical Notes 57:5 (1995), pp. 522-535.

Crossrefs

Subsequence of A192868.

Programs

  • Mathematica
    onePrimeQ[n_] := n == 1 || PrimeQ[n]; Select[Prime[Range[2, 1000]], onePrimeQ[(# + 1)/2^IntegerExponent[# + 1, 2]] &] (* T. D. Noe, Mar 06 2012 *)
  • PARI
    is(n)=n%2&&isprime(n)&&(isprime((n+1)>>valuation(n+1,2)) || n+1==1<
    				

Formula

a(n) >> n (log n)^2.

A273401 Numbers n such that n and n + 1 have exactly the same number of odd divisors.

Original entry on oeis.org

1, 5, 6, 10, 11, 12, 13, 19, 22, 23, 28, 37, 40, 43, 46, 47, 49, 52, 54, 58, 61, 65, 67, 69, 73, 77, 79, 82, 84, 88, 96, 103, 106, 110, 112, 114, 119, 129, 132, 136, 140, 148, 151, 154, 155, 157, 163, 166, 172, 178, 182, 185, 186, 191, 192, 193, 203, 204, 211, 215, 216, 219, 220, 221
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 26 2016

Keywords

Comments

If A001227(n) = A001227(n*2^m) for m >= 0 then:
1) A001227(n) is equal to number of ways to write 2n - 1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers;
2) A001227(n) is equal to number of distinct values of k if k/(2n-1) + 1 divides (k/(2n - 1))^(k/(2n - 1)) + k, (k/(2n - 1))^k + k/(2n - 1) and k^(k/(2n - 1)) + k/(2n - 1).

Examples

			5 and 6 have both two odd divisors: (1 and 5) and (1 and 3) respectively; so 5 is a term in the sequence.
		

Crossrefs

Cf. A001227, A206581 (primes in a(n)).

Programs

A326817 Numbers k such that phi(k) > phi(k+1) > phi(k+2) > phi(k+3) where phi is the Euler totient function (A000010).

Original entry on oeis.org

823, 943, 3133, 4387, 4873, 5443, 5563, 5863, 7213, 7753, 7873, 8383, 9007, 10333, 10693, 11113, 11503, 12043, 12763, 13483, 13843, 13921, 14623, 14683, 16573, 16663, 16963, 16993, 17113, 17983, 19003, 19093, 19303, 20083, 20143, 20953, 21613, 21733, 22513
Offset: 1

Views

Author

Kritsada Moomuang, Oct 20 2019

Keywords

Examples

			823 is in the sequence since phi(823) = 822, phi(824) = 408, phi(825) = 400, phi(826) = 348, and 822 > 408 > 400 > 348.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, page 106, entry 823.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[Differences @ EulerPhi[n + Range[0, 3]], # < 0 &]; Select[Range[23000], aQ] (* Amiram Eldar, Oct 20 2019 *)

A328056 Numbers k such that phi(k) > phi(k+1) > phi(k+2) where phi is the Euler totient function (A000010).

Original entry on oeis.org

313, 523, 733, 823, 824, 943, 944, 973, 1153, 1363, 1573, 1753, 1783, 1813, 1993, 2143, 2413, 2473, 2623, 2803, 3043, 3133, 3134, 3253, 3313, 3463, 3703, 3883, 4093, 4123, 4303, 4387, 4388, 4513, 4723, 4873, 4874, 4933, 5113, 5143, 5353, 5443, 5444, 5563, 5564
Offset: 1

Views

Author

Kritsada Moomuang, Oct 03 2019

Keywords

Comments

Contains all members k of A206581 such that k==103 (mod 210) except 103.- Robert Israel, Oct 16 2019

Examples

			313 is in the sequence since phi(313) = 312, phi(314) = 156, phi(315) = 144, and 312 > 156 > 144.
		

Crossrefs

Supersequence of A326817.

Programs

A272887 Number of ways to write prime(n) as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 3, 2, 2, 4, 1, 2, 4, 2, 2, 4, 4, 2, 2, 3, 2, 2, 4, 6, 3, 4, 2, 4, 4, 4, 1, 4, 4, 4, 6, 2, 2, 2, 4, 4, 6, 4, 2, 2, 6, 3, 2, 2, 4, 4, 6, 4, 3, 6, 4, 4, 8, 2, 2, 4, 2, 6, 4, 4, 2, 4, 2, 3, 4, 6, 4, 6, 2, 4, 4, 2, 8, 2, 4, 4, 8, 2, 4, 4, 4, 4, 9, 2, 8, 2, 6, 4, 2, 4, 4, 6, 8, 6, 2, 2, 2, 6, 4, 8, 4
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 16 2016

Keywords

Comments

Number of distinct values of k such that k/p_n + k divides (k/p_n)^(k/p_n) + k, (k/p_n)^k + k/p_n and k^(k/p_n) + k/p_n where p_n = prime(n) is n-th prime.
a(1) = 0, a(n+1) = number of odd divisors of 1+prime(n+1).
Conjectures:
1) a(Fermat prime(n)) >= n, i.e. a(A019434(1)=3) = 1, a(A019434(2)=5) = 2, a(A019434(3)=17) = 3, a(A019434(4)=257) = 4, a(A019434(5)=65537) = 12 > 5, ...
2) a(2^(2^n)+1) > n;
3) a(2^(2^n)+1) < a(2^(2^(n+1))+1).

Examples

			a(3) = 2 because (4*0+2)*2+4*0+1 = 5 for (x=0, y=2) and (4*1+2)*0+4*1+1 = 5 for (x=1, y=0) where 5 is the 3rd prime.
		

Crossrefs

Cf. A000215 (Fermat numbers), A001227, A000668 (Mersenne primes n such that a(n)=1), A019434 (Fermat primes), A069283, A192869 (primes n such that a(n) = 1 or 2), A206581 (primes n such that a(n)=2), A254748.

Programs

Formula

a(n+1) = A001227(A000040(n+1) + 1).

Extensions

More terms from Alois P. Heinz, May 17 2016

A276660 Primes of the form p*2^k - 1 where p is an odd prime and k >= 0.

Original entry on oeis.org

2, 5, 11, 13, 19, 23, 37, 43, 47, 61, 67, 73, 79, 103, 151, 157, 163, 191, 193, 211, 223, 271, 277, 283, 313, 331, 367, 383, 397, 421, 457, 463, 487, 523, 541, 547, 607, 613, 631, 661, 673, 691, 733, 751, 757, 787, 823, 877, 907, 991, 997, 1051, 1087, 1093, 1123
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 11 2016

Keywords

Examples

			2 is in this sequence because 3*2^0 - 1 = 2 is prime.
5 is in this sequence because 3*2^1 - 1 = 5 is prime.
11 is in this sequence because 3*2^2 - 1 = 11 is prime.
		

Crossrefs

Essentially the same as A192869 and A206581.

Programs

Formula

a(n) >> n (log n)^2. - Charles R Greathouse IV, Sep 11 2016
Showing 1-6 of 6 results.