cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A265208 Total number T(n,k) of lambda-parking functions induced by all partitions of n into exactly k distinct parts; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 3, 0, 4, 5, 0, 5, 10, 0, 6, 14, 16, 0, 7, 21, 25, 0, 8, 27, 43, 0, 9, 36, 74, 0, 10, 44, 107, 125, 0, 11, 55, 146, 189, 0, 12, 65, 207, 307, 0, 13, 78, 267, 471, 0, 14, 90, 342, 786, 0, 15, 105, 436, 1058, 1296, 0, 16, 119, 538, 1490, 1921
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2015

Keywords

Comments

Differs from A265020 first at T(5,2). See example.

Examples

			T(5,2) = 10: There are two partitions of 5 into 2 distinct parts: [2,3], [1,4]. Together they have 10 lambda-parking functions: [1,1], [1,2], [1,3], [1,4], [2,1], [2,2], [2,3], [3,1], [3,2], [4,1]. Here [1,1], [1,2], [1,3], [2,1], [3,1] are induced by both partitions. But they are counted only once.
T(6,1) = 6: [1], [2], [3], [4], [5], [6].
T(6,2) = 14: [1,1], [1,2], [1,3], [1,4], [1,5], [2,1], [2,2], [2,3], [2,4], [3,1], [3,2], [4,1], [4,2], [5,1].
T(6,3) = 16: [1,1,1], [1,1,2], [1,1,3], [1,2,1], [1,2,2], [1,2,3], [1,3,1], [1,3,2], [2,1,1], [2,1,2], [2,1,3], [2,2,1], [2,3,1], [3,1,1], [3,1,2], [3,2,1].
Triangle T(n,k) begins:
00 :  1;
01 :  0,  1;
02 :  0,  2;
03 :  0,  3,   3;
04 :  0,  4,   5;
05 :  0,  5,  10;
06 :  0,  6,  14,  16;
07 :  0,  7,  21,  25;
08 :  0,  8,  27,  43;
09 :  0,  9,  36,  74;
10 :  0, 10,  44, 107,  125;
11 :  0, 11,  55, 146,  189;
12 :  0, 12,  65, 207,  307;
13 :  0, 13,  78, 267,  471;
14 :  0, 14,  90, 342,  786;
15 :  0, 15, 105, 436, 1058, 1296;
16 :  0, 16, 119, 538, 1490, 1921;
		

Crossrefs

Columns k=0-2 give: A000007, A000027, A176222(n+1).
Row sums give A265202.
Cf. A000217, A000272, A003056, A206735 (the same for general partitions), A265020, A265145.

Programs

  • Maple
    b:= proc(p, g, n, i, t) option remember; `if`(g=0, 0, p!/g!*x^p)+
          `if`(n (p-> seq(coeff(p, x, i), i=0..degree(p)))(
            `if`(n=0, 1, b(0$2, n, 1$2))):
    seq(T(n), n=0..25);
  • Mathematica
    b[p_, g_, n_, i_, t_] := b[p, g, n, i, t] = If[g==0, 0, p!/g!*x^p] + If[nJean-François Alcover, Feb 02 2017, translated from Maple *)

Formula

T(A000217(n),n) = A000272(n+1).

A182042 Triangle T(n,k), read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, 0, -3/2, 3/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 3, 0, 6, 9, 0, 9, 27, 27, 0, 12, 54, 108, 81, 0, 15, 90, 270, 405, 243, 0, 18, 135, 540, 1215, 1458, 729, 0, 21, 189, 945, 2835, 5103, 5103, 2187, 0, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 0, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2012

Keywords

Comments

Row sums are 4^n - 1 + 0^n.
Triangle of coefficients in expansion of (1+3*x)^n - 1 + 0^n.

Examples

			Triangle begins:
  1;
  0,  3;
  0,  6,   9;
  0,  9,  27,  27;
  0, 12,  54, 108,   81;
  0, 15,  90, 270,  405,  243;
  0, 18, 135, 540, 1215, 1458,  729;
  0, 21, 189, 945, 2835, 5103, 5103, 2187;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=n then 3^n
        elif k=0 then 0
        else binomial(n,k)*3^k
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
  • Mathematica
    With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k) = if (k==0, 1, binomial(n,k)*3^k);
    matrix(10, 10, n, k, T(n-1,k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 3^n
        elif (k==0): return 0
        else: return binomial(n,k)*3^k
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020

Formula

T(n,0) = 0^n; T(n,k) = binomial(n,k)*3^k for k > 0.
G.f.: (1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2).
T(n,k) = 2*T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k) -3*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 3, T(2,1) = 6, T(2,2) = 9 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = A206735(n,k)*3^k.
T(n,k) = A013610(n,k) - A073424(n,k).

Extensions

a(48) corrected by Georg Fischer, Feb 17 2020

A182059 Triangle, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 0, 6, 12, 8, 0, 8, 24, 32, 16, 0, 10, 40, 80, 80, 32, 0, 12, 60, 160, 240, 192, 64, 0, 14, 84, 280, 560, 672, 448, 128, 0, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 0, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
Offset: 0

Views

Author

Philippe Deléham, Apr 09 2012

Keywords

Comments

Row sums are 3^n - 1 + 0^n.
Triangle of coefficients in expansion of (1+2*x)^n - 1 + 0^n .

Examples

			Triangle begins :
1
0, 2
0, 4, 4
0, 6, 12, 8
0, 8, 24, 32, 16
0, 10, 40, 80, 80, 32
0, 12, 60, 160, 240, 192, 64
0, 14, 84, 280, 560, 672, 448, 128
0, 16, 112, 448, 1120, 1792, 1792, 1024, 256
0, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
0, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
		

Crossrefs

Formula

G.f.: (1-2*x+x^2+2*y*x^2)/(1-2*x-2*y*x+x^2+2*y*x^2).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,1) = T(2,2) = 4 and T(n,k) = 0 if k<0 or if k>n.
T(n,k) = A206735(n,k)*2^k.
T(n,k) = A013609(n,k) - A073424(n,k) .

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.
Showing 1-4 of 4 results.