cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A207868 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 500, 2052, 500, 15, 52, 10900, 278982, 278982, 10900, 52, 203, 322768, 68162042, 455546040, 68162042, 322768, 203, 877, 12297768, 26419793726, 1625686993918, 1625686993918, 26419793726, 12297768, 877
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Table starts
...1.........1..............2.................5.................15
...1.........4.............34...............500..............10900
...2........34...........2052............278982...........68162042
...5.......500.........278982.........455546040......1625686993918
..15.....10900.......68162042.....1625686993918.103204230192540988
..52....322768....26419793726.10764437129618296
.203..12297768.15002771641712
.877.580849872

Examples

			Some solutions for n=5 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..1..0..1....1..0..3....1..0..1....1..0..1....1..2..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....2..1..0....0..1..2....0..2..3....0..1..2
..1..0..1....1..0..1....1..0..1....0..2..3....1..0..1....1..0..1....1..0..1
..0..1..0....0..1..0....2..1..0....1..3..0....2..1..0....0..1..0....0..1..0
		

Crossrefs

Columns 1..5 are A000110(n-1), A207864, A207865, A207866, A207867.
Main diagonal is A207863.
Cf. A207997 (3 colorings), A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings).
Cf. A207981, A208001 (knight), A208021 (king), A208054, A208096, A208301.

A207978 Number of n X 2 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 2, 7, 67, 1080, 25287, 794545, 31858034, 1573857867, 93345011951, 6514819011216, 526593974392123, 48658721593531669, 5084549201524804642, 595348294459678745663, 77500341343460209843627, 11140107960738185817545800, 1757660562895916320583653791
Offset: 0

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Column 2 of A207981.
a(n) is equal to the number of set partitions of {1,2,...,2n} such that k and k+2 do not appear in the same block for any k. - Andrew Howroyd , May 23 2023
a(n) is equal to the number of set partitions of {1,2,...,2n} such that the only sets of size 1 in the set partition are either {1} or {2}.
a(n) is also the dimension of the centralizer algebra End_{S_m}((V^{(m-1,1)}{S_m})^{\otimes n-1} \otimes V_m ) where V^{(m-1,1)}{S_m} is an irreducible S_m module indexed by (m-1,1) and V_m is the permutation module for S_m (with the condition that m is sufficiently large). - Mike Zabrocki, May 23 2023

Examples

			Some solutions for n=4:
..0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0....0..0....0..1
..1..1....1..1....1..1....1..1....1..1....1..1....0..1....1..1....1..1....2..1
..2..3....2..0....2..0....2..2....0..2....0..0....0..1....0..2....0..2....0..1
..2..0....3..3....1..0....3..4....3..1....1..1....0..1....3..4....0..1....0..1
The set partitions of 4 where at most {1} and {2} are the only sets of size 1 are {1234}, {1|234}, {2|134}, {12|34}, {13|24}, {14|23}, {1|2|34} - _Mike Zabrocki_, May 23 2023
		

Crossrefs

Programs

  • Maple
    a:=n->add((-1)^s*binomial(2*n-2, s) * combinat[bell](2*n-s), s = 0 .. 2*n); # Mike Zabrocki, May 23 2023
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> `if`(n=0, 1, b(2*n-1)+b(2*n-2)):
    seq(a(n), n=0..19);  # Alois P. Heinz, May 30 2023
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]];
    a[n_] := If[n == 0, 1, b[2n-1] + b[2n-2]];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 17 2024, after Alois P. Heinz *)
  • Sage
    a = lambda n: sum((-1)**s*binomial(2*n-2,s)*bell_number(2*n-s) for s in range(2*n-2+1)) # Mike Zabrocki, May 23 2023

Formula

a(n) = Sum_{s=0..2n} (-1)^s binomial(2n-2,s) Bell(2n-s). - Mike Zabrocki, May 23 2023
a(n) = A011968(2*n-1) for n>=1. - Alois P. Heinz, May 30 2023

Extensions

New description and a formula added by Mike Zabrocki, May 23 2023
a(0)=1 prepended by Alois P. Heinz, May 30 2023

A207979 Number of n X 3 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

5, 67, 4192, 587208, 147512732, 58668937932, 34119101220224, 27451586022436696, 29334574202437277520, 40343697156563884675488, 69646199705725564208484736, 147875840329637502384856552096, 379682313150983568999164195148800
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Examples

			Some solutions for n=4
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..1..0
..1..1..1....1..1..1....1..2..1....1..1..2....1..1..1....1..2..1....2..1..0
..0..2..2....2..0..2....1..2..0....2..0..0....0..2..0....0..0..0....0..1..3
..1..1..0....1..0..1....0..2..0....3..1..4....1..1..0....2..1..1....0..4..0
		

Crossrefs

Column 3 of A207981.

A207980 Number of n X 4 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

15, 1080, 587208, 953124784, 3410310590912, 22727131144960768, 253335104721267417984, 4382417290595586402531584, 111319355727036703898865465344, 3978834602846298450265688566196224, 193442461762324413798952526604793292800
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Examples

			Some solutions for n=4
..0..0..0..0....0..1..0..0....0..0..0..0....0..0..1..0....0..0..0..0
..1..1..2..1....2..1..2..1....1..1..2..1....1..2..1..0....1..1..1..1
..0..3..0..0....0..0..0..0....2..0..0..0....0..0..1..0....2..0..0..0
..4..1..1..1....1..1..1..1....1..1..1..2....2..2..1..0....1..1..1..1
		

Crossrefs

Column 4 of A207981.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Mar 15 2023

A361452 Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any diagonal or antidiagonal neighbor.

Original entry on oeis.org

1, 7, 4192, 953124784, 213291369981652792, 96638817185266245591837984336, 160065721141038888919235753368205172658011648, 1603869086916486859475402575499346988054543498175515730927380336, 150972529586126094166343144224892296826763766718771806614594599643773846828229334720096
Offset: 1

Views

Author

Andrew Howroyd, Mar 13 2023

Keywords

Crossrefs

Main diagonal of A207981.
Showing 1-5 of 5 results.