cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208675 Number of words, either empty or beginning with the first letter of the ternary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.

Original entry on oeis.org

1, 1, 5, 37, 309, 2751, 25493, 242845, 2360501, 23301307, 232834755, 2349638259, 23905438725, 244889453043, 2523373849701, 26132595017037, 271826326839477, 2838429951771795, 29740725671232119, 312573076392760183, 3294144659048391059, 34802392680979707121
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (3*n-1)-step walks on 3-dimensional cubic lattice from (1,0,0) to (n,n,n) with positive unit steps in all dimensions such that the absolute difference of the dimension indices used in consecutive steps is <= 1.

Examples

			a(2) = 5 = |{aabbcc, aabcbc, aabccb, ababcc, abccba}|.
a(3) = 37 = |{aaabbbccc, aaabbcbcc, aaabbccbc, aaabbcccb, aaabcbbcc, aaabcbcbc, aaabcbccb, aaabccbbc, aaabccbcb, aaabcccbb, aababbccc, aababcbcc, aababccbc, aababcccb, aabbabccc, aabbcccba, aabcbabcc, aabcbccba, aabccbabc, aabccbcba, aabcccbab, aabcccbba, abaabbccc, abaabcbcc, abaabccbc, abaabcccb, abababccc, ababcccba, abbaabccc, abbcccbaa, abcbaabcc, abcbccbaa, abccbaabc, abccbcbaa, abcccbaab, abcccbaba, abcccbbaa}|.
		

Crossrefs

Programs

  • Magma
    A208675:= func< n | (&+[Binomial(n,j)*Binomial(n-1,j)*Binomial(n+j-1,j): j in [0..2*n]]) >;
    [A208675(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    a:= n-> add(binomial(n-1, k)^2 *binomial(2*n-1-k, n-k), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 26 2012
  • Mathematica
    a[n_]:= HypergeometricPFQ[{1-n,-n,n}, {1,1}, 1] (* Michael Somos, Jun 03 2012 *)
  • SageMath
    def A208675(n): return sum(binomial(n,j)*binomial(n-1,j)*binomial(n+j-1,j) for j in range(n+1))
    [A208675(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

From Michael Somos, Jun 03 2012: (Start)
a(n) = A108625(n-1, n).
a(n) = Hypergeometric3F2([1-n, -n, n], [1, 1], 1).
(n+1)^2 * (1 -4*n +5*n^2) * a(n+1) = (5 -5*n -26*n^2 +11*n^3 +55*n^4) * a(n) + (n-1)^2 * (2 +6*n +5*n^2) * a(n-1). (End)
a(n) ~ sqrt((5-sqrt(5))/10)/(2*Pi*n) * ((1+sqrt(5))/2)^(5*n). - Vaclav Kotesovec, Dec 06 2012. Equivalently, a(n) ~ phi^(5*n - 1/2) / (2 * 5^(1/4) * Pi * n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 15*x^3 + 94*x^4 + 668*x^5 + 5144*x^6 + 41884*x^7 + 355307*x^8 + ... appears to have integer coefficients. Cf. A108628. - Peter Bala, Jan 12 2016
From Peter Bala, Apr 05 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*binomial(n-1,k)*binomial(n+k-1,k).
Using binomial(-n,k) = (-1)^k*binomial(n+k-1,k) for nonnegative k, we have:
a(-n) = Sum_{k = 0..n} binomial(-n,k)*binomial(-n-1,k)*binomial(-n+k-1,k).
a(-n) = Sum_{k = 0..n} (-1)^k* binomial(n+k-1,k)*binomial(n+k,k)*binomial(n,k)
a(-n) = (-1)^n*A108628(n-1), for n >= 1.
a(n) = Sum_{k = 1..n} binomial(n,k)*binomial(n-1,k-1)*binomial(n+k-1,k-1) for n >= 1.
Equivalently, a(n) = [(x^n)*(y*z)^(n-1)] (x + y + z)^n*(x + y)^(n-1)*(y + z)^(n-1) for n >= 1.
a(n) = Sum_{k = 0..n-1} (-1)^k*binomial(n-1,k)*binomial(2*n-k-1,n-k)^2.
a(n) = (1/5)*(A005258(n) + 2*A005258(n-1)) for n >= 1.
a(n) = [x^n] 1/(1 - x)*P(n-1,(1 + x)/(1 - x)) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial. Compare with A005258(n) = [x^n] 1/(1 - x)*P(n,(1 + x)/(1 - x)).
a(n) = B(n,n-1,n-1) in the notation of Straub, equation 24. Hence
a(n) = [(x^n)*(y*z)^(n-1)] 1/(1 - x - y - z + x*z + y*z - x*y*z) for n >= 1.
The supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k.
Conjectures:
1) a(n) = [(x*y)^n*z^(n-1)] 1/(1 - x - y - z + x*y + x*y*z) for n >= 1.
2) a(n) = - [(x*z)^(n-1)*(y^n)] 1/(1 + y + z + x*y + y*z + x*z + x*y*z) for n >= 1.
3) a(n) = [x^(n-1)*(y*z)^n] 1/(1 - x - x*y - y*z - x*z - x*y*z) for n >= 1. (End)
From Peter Bala, Mar 17 2023: (Start)
For n >= 1:
a(n) = Sum_{k = 0..n} ((n-k)/(n+k))*binomial(n,k)^2*binomial(n+k,k).
a(n) = Sum_{k = 0..n} (-1)^(n+k-1) * ((n-k)/(n+k)) * binomial(n,k) * binomial(n+k,k)^2. (End)