A208673
Number of words A(n,k), either empty or beginning with the first letter of the k-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 10, 1, 1, 1, 1, 9, 37, 35, 1, 1, 1, 1, 15, 163, 309, 126, 1, 1, 1, 1, 25, 640, 3593, 2751, 462, 1, 1, 1, 1, 41, 2503, 36095, 87501, 25493, 1716, 1, 1, 1, 1, 67, 9559, 362617, 2336376, 2266155, 242845, 6435, 1, 1
Offset: 0
A(0,0) = A(n,0) = A(0,k) = 1: the empty word.
A(2,3) = 5:
+------+ +------+ +------+ +------+ +------+
|aabbcc| |aabcbc| |aabccb| |ababcc| |abccba|
+------+ +------+ +------+ +------+ +------+
|122222| |122222| |122222| |112222| |111112|
|001222| |001122| |001112| |011222| |011122|
|000012| |000112| |000122| |000012| |001222|
+------+ +------+ +------+ +------+ +------+
|xx | |xx | |xx | |x x | |x x|
| xx | | x x | | x x| | x x | | x x |
| xx| | x x| | xx | | xx| | xx |
+------+ +------+ +------+ +------+ +------+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ..
1, 1, 1, 1, 1, 1, 1, ..
1, 1, 3, 5, 9, 15, 25, ..
1, 1, 10, 37, 163, 640, 2503, ..
1, 1, 35, 309, 3593, 36095, 362617, ..
1, 1, 126, 2751, 87501, 2336376, 62748001, ..
1, 1, 462, 25493, 2266155, 164478048, 12085125703, ..
-
b:= proc(t, l) option remember; local n; n:= nops(l);
`if`(n<2 or {0}={l[]}, 1,
`if`(l[t]>0, b(t, [seq(l[i]-`if`(i=t, 1, 0), i=1..n)]), 0)+
`if`(t0,
b(t+1, [seq(l[i]-`if`(i=t+1, 1, 0), i=1..n)]), 0)+
`if`(t>1 and l[t-1]>0,
b(t-1, [seq(l[i]-`if`(i=t-1, 1, 0), i=1..n)]), 0))
end:
A:= (n, k)-> `if`(n=0 or k=0, 1, b(1, [n-1, n$(k-1)])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[t_, l_List] := b[t, l] = Module[{n = Length[l]}, If[n < 2 || {0} == Union[l], 1, If[l[[t]] > 0, b[t, Table[l[[i]] - If[i == t, 1, 0], {i, 1, n}]], 0] + If[t < n && l[[t + 1]] > 0, b[t + 1, Table[l[[i]] - If[i == t + 1, 1, 0], {i, 1, n}]], 0] + If[t > 1 && l[[t - 1]] > 0, b[t - 1, Table[l[[i]] - If[i == t - 1, 1, 0], {i, 1, n}]], 0]]]; A[n_, k_] := If[n == 0 || k == 0, 1, b[1, Join[{n - 1}, Array[n&, k - 1]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
-
F(u)={my(n=#u); sum(k=1, n,u[k]*binomial(n-1,k-1))}
step(u, c)={my(n=#u); vector(n, k, sum(i=max(0, 2*k-c-n), k-1, sum(j=0, n-2*k+i+c, u[k-i+j]*binomial(n-1, 2*k-1-c-i+j)*binomial(k-1, k-i-1)*binomial(k-i+j-c, j) ))) }
R(n,k)={my(r=vector(n+1), u=vector(k), v=vector(k)); u[1]=v[1]=r[1]=r[2]=1; for(n=3, #r, u=step(u,1); v=step(v,0)+u; r[n]=F(v)); r}
T(n,k)={if(n==0||k==0, 1, R(k,n)[1+k])} \\ Andrew Howroyd, Feb 22 2022
A208881
Number of words either empty or beginning with the first letter of the ternary alphabet, where each letter of the alphabet occurs n times.
Original entry on oeis.org
1, 2, 30, 560, 11550, 252252, 5717712, 133024320, 3155170590, 75957810500, 1850332263780, 45508998487680, 1128243920840400, 28159366024288800, 706857555303576000, 17831659928458210560, 451781821468671694110, 11489952898943726476500, 293206575828601020085500
Offset: 0
a(0) = 1: the empty word.
a(1) = 2 = |{abc, acb}|.
a(2) = 30 = |{aabbcc, aabcbc, aabccb, aacbbc, aacbcb, aaccbb, ababcc, abacbc, abaccb, abbacc, abbcac, abbcca, abcabc, abcacb, abcbac, abcbca, abccab, abccba, acabbc, acabcb, acacbb, acbabc, acbacb, acbbac, acbbca, acbcab, acbcba, accabb, accbab, accbba}|.
A209183
Number of words, either empty or beginning with the first letter of the cyclic 4-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
Original entry on oeis.org
1, 2, 62, 2830, 151686, 8893482, 552309938, 35702836038, 2377145582550, 161906392007554, 11227409430866262, 790011772823243214, 56264746328351077194, 4048156319577916177530, 293797748889879887735802, 21483000387938509658756790, 1581177100760460768472276086
Offset: 0
A208880
Number of words either empty or beginning with the first letter of the cyclic n-ary alphabet, where each letter of the alphabet occurs twice and letters of neighboring word positions are equal or neighbors in the alphabet.
Original entry on oeis.org
1, 1, 3, 30, 62, 114, 202, 346, 582, 966, 1590, 2602, 4242, 6898, 11198, 18158, 29422, 47650, 77146, 124874, 202102, 327062, 529254, 856410, 1385762, 2242274, 3628142, 5870526, 9498782, 15369426, 24868330, 40237882, 65106342, 105344358, 170450838, 275795338
Offset: 0
a(0) = 1: the empty word.
a(1) = 1 = |{aa}|.
a(2) = 3 = |{aabb, abab, abba}|.
a(3) = 30 = |{aabbcc, aabcbc, aabccb, aacbbc, aacbcb, aaccbb, ababcc, abacbc, abaccb, abbacc, abbcac, abbcca, abcabc, abcacb, abcbac, abcbca, abccab, abccba, acabbc, acabcb, acacbb, acbabc, acbacb, acbbac, acbbca, acbcab, acbcba, accabb, accbab, accbba}|.
-
a:= n-> `if`(n<3, 1+n*(n-1),
(<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <1|-1|-2|3>>^n.
<<2, 2, 14, 30>>)[1, 1]):
seq(a(n), n=0..40);
-
Join[{1,1,3},LinearRecurrence[{3,-2,-1,1},{30,62,114,202},40]] (* Harvey P. Dale, Mar 09 2015 *)
A209184
Number of words, either empty or beginning with the first letter of the cyclic 5-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
Original entry on oeis.org
1, 2, 114, 12622, 1754954, 276049002, 46957069166, 8432879950182, 1576025367484986, 303680854369601602, 59946832651601518874, 12067737101428788147678, 2469034689095701731579766, 512096607962969119056789578, 107455511844928367137882085286
Offset: 0
A209185
Number of words, either empty or beginning with the first letter of the cyclic 6-ary alphabet, where each letter of the alphabet occurs n times and letters of neighboring word positions are equal or neighbors in the alphabet.
Original entry on oeis.org
1, 2, 202, 53768, 19341130, 8151741752, 3795394507240, 1892725627422240, 992594962274742090, 540969426319412656280, 303934170379321788972952, 175019302819674622982714912, 102858166922334018149414066152, 61493440878115135100772134725088
Offset: 0
Showing 1-6 of 6 results.
Comments