cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A085984 Decimal expansion of solution to e^x*(-1 + x) = (1 + x)/e^x.

Original entry on oeis.org

1, 1, 9, 9, 6, 7, 8, 6, 4, 0, 2, 5, 7, 7, 3, 3, 8, 3, 3, 9, 1, 6, 3, 6, 9, 8, 4, 8, 6, 4, 1, 1, 4, 1, 9, 4, 4, 2, 6, 1, 4, 5, 8, 7, 8, 8, 4, 1, 8, 6, 0, 7, 2, 0, 8, 9, 1, 5, 4, 7, 7, 7, 8, 3, 9, 1, 8, 1, 2, 4, 7, 2, 5, 2, 2, 3, 8, 4, 7, 4, 7, 9, 9, 9, 9, 0, 8, 6, 9, 9, 2, 1, 4, 6, 5, 0, 9, 3, 7, 9, 8, 8
Offset: 1

Views

Author

Eric W. Weisstein, Jul 06 2003

Keywords

Comments

This constant can also be defined as the root of coth x = x, as this equation and the above are equivalent. - Carl R. White, Dec 09 2003. Also the root of x*tanh x = 1. - N. J. A. Sloane, May 07 2020
This constant is also the point on the parametric tractrix (t - tanh(t), sech(t)) the least distant from the origin. - Michael Clausen, Feb 18 2013
This constant also equals sqrt(lambda^2+1), where lambda is the Laplace limit constant A033259. - Jean-François Alcover, Sep 08 2014, after Steven Finch.
For each of the real symmetric n X n matrices M defined by M(i,j) = max(i,j) with n >= 2, there exist n-1 negative eigenvalues < -1/4 and only one positive eigenvalue lambda(n) such that n^2/2 < lambda(n) < n^2. Indeed, when n tends to infinity, lambda(n) ~ n^2/(this constant)^2 (see reference O. Carton et al.). For n = 2, the positive eigenvalue is (3+sqrt(17))/2 [A178255]. - Bernard Schott, Mar 13 2020

Examples

			1.1996786402577338339163698486411419442614587884186072...
		

References

  • O. Carton, L. Rosaz, M. Zeitoun, Problèmes corrigés de Mathématiques posés au Concours de Mines/Ponts, Tome 5, Ellipses, 1992; Problème Mines-Ponts 1991 - Options M, P', TA - Epreuve pratique p. 125.
  • Steven R. Finch, Mathematical constants, Volume 94, Encyclopedia of mathematics and its applications, Cambridge University Press, 2003, p. 268.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 30, equation 30:10:9 at page 283.

Crossrefs

Cf. A003957 (x = cos(x)), A009379, A033259, A069855, A209289.

Programs

  • Mathematica
    RealDigits[ x /. FindRoot[ Coth[x] == x, {x, 1}, WorkingPrecision -> 102]] // First (* Jean-François Alcover, Feb 08 2013 *)
    1+2 NSum[LaguerreL[n-1,1,4 n]/n Exp[-2 n],{n,1,Infinity}] //
      (* Aaron Hendrickson, Mar 17 2021 *)
  • PARI
    solve(u=1,2,tanh(u)-1/u)  /* type e.g. \p99 to get 99 digits; M. F. Hasler, Feb 01 2011 */

Formula

Equals 1 + 2*Sum_{n>=1} (Laguerre(n-1,1,4n)/n)*e^(-2n) (see Mathematics Stack Exchange in Links). - Aaron Hendrickson, Mar 17 2022

A306800 Square array whose entry A(n,k) is the number of endofunctions on a set of size n with preimage constraint {0,1,...,k}, for n >= 0, k >= 0, read by descending antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 6, 0, 1, 1, 4, 24, 24, 0, 1, 1, 4, 27, 204, 120, 0, 1, 1, 4, 27, 252, 2220, 720, 0, 1, 1, 4, 27, 256, 3020, 29520, 5040, 0, 1, 1, 4, 27, 256, 3120, 44220, 463680, 40320, 0, 1, 1, 4, 27, 256, 3125, 46470, 765030, 8401680, 362880, 0
Offset: 0

Views

Author

Benjamin Otto, Mar 10 2019

Keywords

Comments

A preimage constraint is a set of nonnegative integers such that the size of the inverse image of any element is one of the values in that set.
Thus, A(n,k) is the number of endofunctions on a set of size n such that each preimage has at most k entries. Equivalently, A(n,k) is the number of n-letter words from an n-letter alphabet such that no letter appears more than k times.

Examples

			Array begins:
  1    1     1     1     1 ...
  0    1     1     1     1 ...
  0    2     4     4     4 ...
  0    6    24    27    27 ...
  0   24   204   252   256 ...
  0  120  2220  3020  3120 ...
  0  720 29520 44220 46470 ...
  ...
		

Crossrefs

A(n,n) gives A000312.
Similar array for preimage condition {i>=0 | i!=k}: A245413.
Number of functions with preimage condition given by the even nonnegative integers: A209289.
Sum over all k of the number of functions with preimage condition {0,k}: A231812.
Cf. A019575.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 and i=0, 1, `if`(i<1, 0,
          add(b(n-j, i-1, k)*binomial(n, j), j=0..min(k, n))))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Apr 05 2019
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0 && i==0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] Binomial[n, j], {j, 0, Min[k, n]}]]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *)
  • Python
    # print first num_entries entries in column k
    import math, sympy; x=sympy.symbols('x')
    k=5; num_entries = 64
    P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [1]; curr_pow = 1
    for term in range(1,num_entries):
       curr_pow=(curr_pow*eP).expand()
       r.append(curr_pow.coeff(x**term)*math.factorial(term))
    print(r)

Formula

A(n,k) = n! * [x^n] e_k(x)^n, where e_k(x) is the truncated exponential 1 + x + x^2/2! + ... + x^k/k!. When k>1, the link above yields explicit constants c_k, r_k so that the columns are asymptotically c_k * n^(-1/2) * r_k^-n. Stirling's approximation gives column k=1, and column k=0 is 0.
A(n,k) = Sum_{j=1..min(k,n)} A019575(n,j) for n>=1. - Alois P. Heinz, Jun 28 2023

Extensions

Offset changed to 0 by Alois P. Heinz, Jun 28 2023

A383853 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(4*n).

Original entry on oeis.org

1, 1, 260, 556032, 4641176128, 106519579045760, 5472276566891956224, 549375993583284180705280, 97867116732573493470161420288, 28783909470167571938915053763592192, 13216052972619446942074113385580542689280, 9058922175695195359062480694771506779050213376
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, k]*(n-k)^(4*n), {k, 0, n}], {n, 1, 12}]] (* or *)
    Join[{1}, Table[Sum[Binomial[2*n, n+k]*k^(4*n), {k, 0, n}], {n, 1, 12}]]

Formula

a(n) = Sum_{k=0..n} binomial(2*n, n+k) * k^(4*n).
a(n) ~ 4^n * r^(4*n+1) * n^(4*n) / (sqrt(2 - r^2) * (1 - r^2)^n * exp(4*n)), where r = 0.9683644349844134852843167967986294187258222293516... is the root of the equation (1+r)/(1-r) = exp(4/r).

A383916 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(3*n).

Original entry on oeis.org

1, 1, 68, 22770, 21143488, 41904629550, 151957171590144, 910666718387157732, 8390164064875701321728, 112583179357513548960803670, 2109812207969377622615440752640, 53397692462483465346961668429307836, 1775866125092261344436828225211633500160, 75857512919848315654302238627976991244564300
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(3*n), {k, 0, n}], {n, 1, 15}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(3*n + 1) * n^(3*n) / (sqrt(3 - r^2) * exp(3*n) * (1 - r^2)^n), where r = 0.92488761106894648930384927930334708844525256369797556858640... is the root of the equation (1 + r)/(1 - r) = exp(3/r).

A383917 a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(5*n).

Original entry on oeis.org

1, 1, 1028, 14545530, 1127435263168, 309320354959336350, 232325928732003715014144, 403150958104730561230009068564, 1432706082674749593552098155989352448, 9528431104471630510834164178027409070527670, 110580781643902847320855308323644986008860441968640
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2025

Keywords

Comments

In general, for m>=1, Sum_{k=0..n} binomial(2*n, n-k) * k^(m*n) ~ 2^(2*n + 1/2) * r^(m*n + 1) * n^(m*n) / (sqrt(m + (2-m)*r^2) * exp(m*n) * (1 - r^2)^n), where r is the root of the equation (1 + r)/(1 - r) = exp(m/r).

Crossrefs

Cf. A032443 (m=0), A345876 (m=1), A209289/2 (m=2), A383916 (m=3), A383853 (m=4).

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[2*n, n-k]*k^(5*n), {k, 0, n}], {n, 1, 12}]]

Formula

a(n) ~ 2^(2*n + 1/2) * r^(5*n + 1) * n^(5*n) / (sqrt(5 - 3*r^2) * exp(5*n) * (1 - r^2)^n), where r = 0.98743428968604456152277643726278132237092161504496484119319... is the root of the equation (1 + r)/(1 - r) = exp(5/r).

A225942 Triangular array read by rows: T(n,k) is the number of f:{1,2,...,n}->{1,2,...,n} with exactly 2k elements that have a preimage of even (possibly zero) cardinality; n>=0, 0<=k<=floor(n/2).

Original entry on oeis.org

1, 1, 2, 2, 6, 21, 24, 192, 40, 120, 1800, 1205, 720, 18000, 25680, 2256, 5040, 194040, 489510, 134953, 40320, 2257920, 9031680, 5196800, 250496, 362880, 28304640, 167015520, 166793760, 24943689, 3628800, 381024000, 3149798400, 4904524800, 1514960640, 46063360
Offset: 0

Views

Author

Geoffrey Critzer, May 21 2013

Keywords

Comments

Urn A is initially filled with n labeled balls while urn B is empty. A ball is randomly selected and switched from one urn to the other. T(n,k)/n^n is the probability that urn A contains 2k balls after n switches have been made.
Row sums = n^n.
T(n,0) = n!.
T(2n,n) = A209289(n).

Examples

			1;
1;
2,    2;
6,    21;
24,   192,    40;
120,  1800,   1205;
720,  18000,  25680,  2256;
5040, 194040, 489510, 134953;
		

Programs

  • Mathematica
    Map[Select[#, # > 0 &] &, Prepend[Table[nn = n;
        CoefficientList[
         Expand[n! Coefficient[
            Series[(y Cosh[x] + Sinh[x])^n, {x, 0, nn}], x^n]], y], {n, 1,
          7}], {1}]] // Grid

Formula

T(n,k) = n! * [x^n*y^(2k)] (y*cosh(x)+sinh(x))^n.
Showing 1-6 of 6 results.