cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052127 Sum_{n >= 0} a(n) * x^n / n!^2 = exp(-2*x)/(1-x)^3.

Original entry on oeis.org

1, 1, 8, 96, 2112, 68160, 3087360, 185633280, 14301020160, 1372232171520, 160390869811200, 22426206024499200, 3695148753459609600, 708443854690399027200, 156340439420689081958400, 39342248735234589720576000, 11197266840049016358567936000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2000

Keywords

Comments

As described in the Stanley reference, this sequence gives the expectation of the fourth moment of a random sign matrix (a matrix whose entries are independently set equal to -1 or 1 with equal probability) of size n. For large n, a(n) is asymptotic to (n!)^2*(n^2+7n+10)/(2e^2). - Kevin P. Costello (kcostell(AT)gmail.com), Oct 22 2007

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64(b).
  • G. Szekeres, The average value of skew Hadamard matrices, Proceedings of the First Australian Conference on Combinatorial Mathematics (Univ. Newcastle, Newcastle, 1972), pp. 55--59. Univ. of Newcastle Res. Associates, Newcastle, 1972. MR0349708 (50 #2201). This is S_4(n).

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30), v = Vec(serlaplace( exp(-2*x)/(1-x)^3))); vector(#v, k, v[k]*(k-1)!) \\ Michel Marcus, Oct 25 2021
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A052127(n): return int((n+5)*(n+2)*factorial(n)**2*sum(Fraction((-1 if k&1 else 1)*(k+3)<Chai Wah Wu, Apr 20 2023

Formula

a(n) = (n!)^2*A209429(n)/A209430(n). [Szekeres]
a(n) = n! * A052124(n). - Sean A. Irvine, Oct 25 2021

A209430 Denominator of l(n), where l(1)=1, l(2)=2, l(n)=l(n-1)+2*l(n-2)/n.

Original entry on oeis.org

1, 1, 3, 3, 15, 45, 315, 315, 2835, 14175, 155925, 467775, 6081075, 42567525, 58046625, 638512875, 10854718875, 97692469875, 1856156927625, 9280784638125, 194896477400625, 2143861251406875, 49308808782358125, 147926426347074375, 217538862275109375, 4370553505709015625
Offset: 1

Views

Author

N. J. A. Sloane, Mar 22 2012

Keywords

Examples

			1, 2, 8/3, 11/3, 71/15, 268/45, 2302/315, 2771/315, 29543/2835, 172654/14175, 2194624/155925, 7533469/467775, 111102841/6081075, 875654984/42567525, ...
		

References

  • Szekeres, G. The average value of skew Hadamard matrices. Proceedings of the First Australian Conference on Combinatorial Mathematics (Univ. Newcastle, Newcastle, 1972), pp. 55--59. Univ. of Newcastle Res. Associates, Newcastle, 1972. MR0349708 (50 #2201)

Crossrefs

Programs

  • Mathematica
    Denominator[RecurrenceTable[{a[1]==1,a[2]==2,a[n]==a[n-1]+(2a[n-2])/n},a,{n,30}]] (* Harvey P. Dale, Mar 30 2014 *)
Showing 1-2 of 2 results.