A052124
Expansion of e.g.f. exp(-2*x)/(1-x)^3.
Original entry on oeis.org
1, 1, 4, 16, 88, 568, 4288, 36832, 354688, 3781504, 44199424, 561823744, 7714272256, 113769309184, 1793341407232, 30085661765632, 535170830467072, 10060645294440448, 199287423535808512, 4148644277780217856, 90545807649965080576, 2067407731760475406336, 49285894020028992323584
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64(b).
-
A052124 := proc(n) option remember; if n <=1 then 1 else n*A052124(n-1)+2*(n-1)*A052124(n-2); fi; end; # Detlef Pauly
-
Table[(n+5)*(n+2)*n!*Sum[(-1)^k*2^(k+2)*(k+3)/(k+5)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 28 2012 *)
With[{nn=20},CoefficientList[Series[Exp[(-2x)]/(1-x)^3,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 23 2017 *)
-
my(x='x+O('x^25)); Vec(serlaplace( exp(-2*x)/(1-x)^3)) \\ Michel Marcus, Oct 25 2021
-
from math import factorial
from fractions import Fraction
def A052124(n): return int((n+5)*(n+2)*factorial(n)*sum(Fraction((-1 if k&1 else 1)*(k+3)<Chai Wah Wu, Apr 20 2023
A209429
Numerator of l(n), where l(1)=1, l(2)=2, l(n)=l(n-1)+2*l(n-2)/n.
Original entry on oeis.org
1, 2, 8, 11, 71, 268, 2302, 2771, 29543, 172654, 2194624, 7533469, 111102841, 875654984, 1335478594, 16332117629, 307026528761, 3040884758542, 63303287929996, 345404844856129, 7886534621278669, 94005382576044068, 2335627560917144282, 7547413632563686237, 11923476834093824801
Offset: 1
1, 2, 8/3, 11/3, 71/15, 268/45, 2302/315, 2771/315, 29543/2835, 172654/14175, 2194624/155925, 7533469/467775, 111102841/6081075, 875654984/42567525, ...
- Szekeres, G. The average value of skew Hadamard matrices. Proceedings of the First Australian Conference on Combinatorial Mathematics (Univ. Newcastle, Newcastle, 1972), pp. 55--59. Univ. of Newcastle Res. Associates, Newcastle, 1972. MR0349708 (50 #2201)
-
Numerator[RecurrenceTable[{a[1] == 1, a[2] == 2, a[n] == a[n - 1] + (2 a[n - 2])/n}, a, {n, 50}]] (* G. C. Greubel, Jan 02 2018 *)
A209430
Denominator of l(n), where l(1)=1, l(2)=2, l(n)=l(n-1)+2*l(n-2)/n.
Original entry on oeis.org
1, 1, 3, 3, 15, 45, 315, 315, 2835, 14175, 155925, 467775, 6081075, 42567525, 58046625, 638512875, 10854718875, 97692469875, 1856156927625, 9280784638125, 194896477400625, 2143861251406875, 49308808782358125, 147926426347074375, 217538862275109375, 4370553505709015625
Offset: 1
1, 2, 8/3, 11/3, 71/15, 268/45, 2302/315, 2771/315, 29543/2835, 172654/14175, 2194624/155925, 7533469/467775, 111102841/6081075, 875654984/42567525, ...
- Szekeres, G. The average value of skew Hadamard matrices. Proceedings of the First Australian Conference on Combinatorial Mathematics (Univ. Newcastle, Newcastle, 1972), pp. 55--59. Univ. of Newcastle Res. Associates, Newcastle, 1972. MR0349708 (50 #2201)
-
Denominator[RecurrenceTable[{a[1]==1,a[2]==2,a[n]==a[n-1]+(2a[n-2])/n},a,{n,30}]] (* Harvey P. Dale, Mar 30 2014 *)
A357571
The sixth moment of an n X n random +-1 matrix.
Original entry on oeis.org
1, 1, 32, 1536, 282624, 66846720, 27053752320, 16104538275840, 13681567224299520, 15874223643851489280, 24412997036693834956800, 48514602066025722465484800, 121994703799547846503012761600, 381343447691461317926230740172800, 1459468400650603118890910517244723200
Offset: 0
-
f6(n,m4,m6)=sum(j=0,n, binomial(n,j)*sum(a=0,j, binomial(j,a)*(m6-15)^a*(m4-3)^(j-a)*D(n,a,j-a)))
D(n,a,b)=prod(j=0,a+b-1,n-j)*sum(i=0,b, binomial(b,i)*C(i)*H(n,b-i,a,b))*P(n-a-b)
P(n)=n!*(n+2)!*(n+4)!/48
C(n)=if(n<2, n==0, (n-1)*(C(n-1)+15*C(n-2)))
H(n,j,a,b)=sum(x=1,j,binomial(j-1,x-1)*j!/x!*prod(y=0,x-1, 3*(n-a-b)-y))
\\ Charles R Greathouse IV, Oct 03 2022
-
a(n)={(n!)^2 * sum(j=0, n, sum(i=0, j, ((1+i)*(2+i)*(4+i)! / (48*(n-j)!)) * binomial(14+j+2*i,j-i) * (16)^(n-j) * (-2)^(j-i) ))} \\ Andrew Howroyd, Mar 16 2023
-
from fractions import Fraction
from math import factorial, comb
def A357571(n): return int(factorial(n)**2*sum(Fraction(1<<(n-j<<2),3*factorial(n-j))*sum((1+i)*(2+i)*factorial(4+i)*comb(14+j+(i<<1),j-i)*(-1 if (j-i)&1 else 1)<<(j-i) for i in range(j+1)) for j in range(n+1)))>>4 # Chai Wah Wu, Apr 20 2023
a(0)=1 prepended and some terms corrected by
Alois P. Heinz, Apr 19 2023
A362413
The second moment of an n X n symmetric random +-1 matrix.
Original entry on oeis.org
1, 1, 2, 8, 44, 244, 1744, 13768, 127952, 1270736, 14384096, 172799296, 2306400832, 32442943168, 498547591424, 8031916728704, 139611091407104, 2533449773986048, 49133884886866432, 991341134236389376, 21218511171980205056, 471083434031674336256
Offset: 0
- Zelin Lv, On The Moments of Random Determinants, Master Thesis, the University of Chicago.
- I. G. Zhurbenko, Moments of random determinants, Theory of Probability & Its Application, 13(4):682-686, 1968.
-
a:= n-> `if`(n=0, 1, q(n)*(n-1)!):
p:= n-> `if`(n<3, 1, 3-irem(n, 2)):
q:= proc(n) option remember;
p(n)+add(p(n-i)*q(i)/i, i=1..n-1)
end:
seq(a(n), n=0..21); # Alois P. Heinz, Apr 19 2023
-
a[n_] := If[n == 0, 1, q[n]*(n-1)!];
p[n_] := If[n < 3, 1, 3-Mod[n, 2]];
q[n_] := q[n] = p[n] + Sum[p[n-i]*q[i]/i, {i, 1, n-1}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 24 2025, after Alois P. Heinz *)
-
from math import factorial
from fractions import Fraction
from functools import lru_cache
@lru_cache(maxsize=None)
def A362413(n): return int(((1 if n<=2 else (2 if n&1 else 3))+sum(Fraction((1 if n-i<=2 else (2 if n-i&1 else 3))*A362413(i),factorial(i)) for i in range(1,n)))*factorial(n-1)) if n else 1 # Chai Wah Wu, Apr 20 2023
-
x = LazyPowerSeriesRing(QQ, "x").gen()
egf = exp(-x * (x + 1)) / sqrt((x + 1) * (1 - x)^5)
[egf[n] * factorial(n) for n in range(22)] # Peter Luschny, Apr 20 2023
Showing 1-5 of 5 results.
Comments